Ejecta splashing is accompanied by the formation of impact craters in oblique impact of a sphere onto a granular target. We investigated the morphology and scaling of the ejection, together with the evolution and final size of crater by performing a series of experiments, varying the impact angle θ and impact speed V 0. The experiment categorized the crater shapes in the space parameters F r and θ and revealed that the maximum ejecta height exhibits two regimes related to Froude number, while the crater length, width, and depth are all collapsed to a master line. Then, the evolution characteristics of the corolla dimensions (top diameter, neck size, bottom diameter, and height) are determined. Moreover, a simple ballistic model taking into account the air drag force acting on the ejecta has been proposed to predict the dynamic processes of the corolla in oblique impacts. Furthermore, the opening of the crater formation deduced by the dynamics of the corolla formed and the collapsing process (i.e., the splashed sand avalanching down along the wall of the crater) have been investigated in detail using a simplified Bouchaud–Cates–Ravi–Edwards model. Our theoretical model demonstrated high accuracy in reproducing the evolution of a crater during impacting and in predicting the final crater scaling after avalanching.

1.
J.
Aschauer
and
T.
Kenkmann
, “
Impact cratering on slopes
,”
Icarus
290
,
89
(
2017
).
2.
E.
Pierazzo
and
H. J.
Melosh
, “
Understanding oblique impacts from experiments, observations, and modeling
,”
Annu. Rev. Earth Planet. Sci.
28
,
141
167
(
2000
).
3.
P. M.
Miklavčič
,
P.
Sánchez
,
E.
Wright
,
A. C.
Quillen
, and
H.
Askari
, “
Sub-surface granular dynamics in the context of oblique, low-velocity impacts into angular granular media
,”
Icarus
385
,
115089
(
2022
).
4.
D. E.
Gault
and
J. A.
Wedekind
, “
Experimental studies of oblique impact
,” in
Lunar Planetery Science Conference
(
Pergamon Press, Inc
.,
1978
), Vol.
9
, pp.
3843
3875
.
5.
K. A.
Holsapple
, “
The scaling of impact processes in planetary sciences
,”
Annu. Rev. Earth Planet. Sci.
21
,
333
373
(
1993
).
6.
X. J.
Zheng
,
Z. T.
Wang
, and
Z. G.
Qiu
, “
Impact craters in loose granular media
,”
Eur. Phys. J. E
13
,
321
324
(
2004
).
7.
X.
Ye
,
D.
Wang
,
X.
Zhang
,
C.
Zhang
,
W.
Du
,
X.
Su
, and
G.
Li
, “
Projectile oblique impact on granular media: Penetration depth and dynamic process
,”
Granular Matter
23
,
19
(
2021
).
8.
E.
Wright
,
A. C.
Quillen
,
J.
South
,
R. C.
Nelson
,
P.
Sánchez
,
J.
Siu
,
H.
Askari
,
M.
Nakajima
, and
S. R.
Schwartz
, “
Ricochets on asteroids: Experimental study of low velocity grazing impacts into granular media
,”
Icarus
351
,
113963
(
2020
).
9.
S.
Takizawa
,
R.
Yamaguchi
, and
H.
Katsuragi
, “
A novel experimental setup for an oblique impact onto an inclined granular layer
,”
Rev. Sci. Instrum.
91
,
014501
(
2020
).
10.
K.
Hayashi
and
I.
Sumita
, “
Low-velocity impact cratering experiments in granular slopes
,”
Icarus
291
,
160
175
(
2017
).
11.
S.
Takizawa
and
H.
Katsuragi
, “
Scaling laws for the oblique impact cratering on an inclined granular surface
,”
Icarus
335
,
113409
(
2020
).
12.
J. O.
Marston
,
E. Q.
Li
, and
S. T.
Thoroddsen
, “
Evolution of fluid-like granular ejecta generated by sphere impact
,”
J. Fluid Mech.
704
,
5
(
2012
).
13.
S.
Deboeuf
,
P.
Gondret
, and
M.
Rabaud
, “
Dynamics of grain ejection by sphere impact on a granular bed
,”
Phys. Rev. E
79
,
041306
(
2009
).
14.
D.
Lohse
,
R.
Rauhe
,
R.
Bergmann
, and
D.
Van Der Meer
, “
Creating a dry variety of quicksand
,”
Nature
432
,
689
690
(
2004
).
15.
S. T.
Thoroddsen
and
A. Q.
Shen
, “
Granular jets
,”
Phys. Fluids
13
,
4
(
2001
).
16.
J. F.
Boudet
,
Y.
Amarouchene
, and
H.
Kellay
, “
Dynamics of impact cratering in shallow sand layers
,”
Phys. Rev. Lett.
96
,
158001
(
2006
).
17.
F.
Lin
,
Y.
Yang
,
J.
Zou
, and
W. D.
Ristenpart
, “
Splashing during impact on heated granular beds
,”
Phys. Rev. Fluids
5
,
114302
(
2020
).
18.
T.
Sabuwala
,
C.
Butcher
,
G.
Gioia
, and
P.
Chakraborty
, “
Ray systems in granular cratering
,”
Phys. Rev. Lett.
120
,
264501
(
2018
).
19.
F.
Pacheco-Vázquez
, “
Ray systems and craters generated by the impact of nonspherical projectiles
,”
Phys. Rev. Lett.
122
,
164501
(
2019
).
20.
C.
Clanet
,
F.
Hersen
, and
L.
Bocquet
, “
Secrets of successful stone-skipping
,”
Nature
427
,
29
(
2004
).
21.
J.
Goddard
, “
Nonlinear elasticity and pressure-dependent wave speeds in granular media
,”
Proc. R. Soc. London
430
,
105
131
(
1990
).
22.
X.
Ye
and
C.
Zhang
, “
Impact granular media for intruders with different geometries: Force and rheology
,”
Acta Mech. Sin.
39
,
722198
(
2023
).
23.
S. T.
Thoroddsen
,
T. G.
Etoh
,
K.
Takehara
, and
Y.
Takano
, “
Impact jetting by a solid sphere
,”
J. Fluid Mech.
499
,
139
148
(
2004
).
24.
M.
Jiménez-Valdez
et al, “
Doublet craters originated by low-speed impact experiments in granular matter
,”
Granular Matter
24
,
116
(
2022
).
25.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
26.
B.
Hermalyn
and
P. H.
Schultz
, “
Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth
,”
Icarus
216
,
269
279
(
2011
).
27.
S.
Siavoshi
and
A.
Kudrolli
, “
Failure of a granular step
,”
Phys. Rev. E
71
,
051302
(
2005
).
28.
V. Y.
Rivkind
and
G. M.
Ryskin
, “
Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers
,”
Fluid Dyn.
11
,
5
(
1977
).
29.
T.
Boutreux
,
E.
Raphaël
, and
P. G.
de Gennes
, “
Surface flows of granular materials: A modified picture for thick avalanches
,”
Phys. Rev. E
58
,
4692
(
1998
).
30.
J. S.
Uehara
,
M. A.
Ambroso
,
R. P.
Ojha
, and
D. J.
Durian
, “
Low-speed impact craters in loose granular media
,”
Phys. Rev. Lett.
90
,
194301
(
2003
).
You do not currently have access to this content.