This study presents a new synergy model that incorporates the accelerated motion of particles resulting from bubble collapse. The model uses the Erosion/Corrosion Research Center erosion model to predict the combined effect of cavitation and particle erosion on wall surfaces. The results show that, compared with the conventional erosion model, the synergy model reduces the error in the erosion mass loss by up to 24.60%. The significant improvement in prediction accuracy confirms the effectiveness of the synergy model. The severity of sample erosion is positively correlated with the cavitation-inducer angle. The synergy effect leads to an increase in the extent and severity of erosion. Smaller particles demonstrate a more pronounced synergy effect, resulting in significantly accelerated motion and a highly concentrated particle distribution. High erosion rates are associated with high-speed impacts and small-angle impact zones, primarily caused by high-speed cutting erosion. This study presents a novel prediction method for exploring the synergy effect of cavitation and particles on wall erosion and investigates the motion characteristics of particles under this effect.

1.
L.
Xiaobing
,
Z.
Yongzhong
,
H.
Hong
,
Y.
Zhishun
,
P.
Jiayang
, and
T.
Chang'an
, “
Research on sediment wear of turbine runner blades in Yuzixi Hydropower Station
,”
J. Xihua Univ.
39
,
67
73
(
2020
).
2.
Y.
Zhang
,
W.
Jiang
,
W.
Feng
,
Q.
Jia
,
Y.
Wang
, and
D.
Chen
, “
Investigation of hydraulic losses in different clocking positions of pump-turbine in pump mode
,”
J. Energy Storage
81
,
110459
(
2024
).
3.
R.
Wood
and
S.
Hutton
, “
The synergistic effect of erosion and corrosion: Trends in published results
,”
Wear
140
,
387
394
(
1990
).
4.
J.
Sato
,
K.
Usami
, and
T.
Okamura
, “
Basic study of coupled damage caused by silt abrasion and cavitation erosion, experiments with submerged water jets
,”
JSME Int. J., Ser. 2
34
,
727
731
(
1994
), http://www.cqvip.com/qk/90724x/199406/1302175.html.
5.
J.
Madadnia
and
I.
Owen
, “
Accelerated surface erosion by cavitating particulate-laden flows
,”
Wear
165
,
113
116
(
1993
).
6.
C. V. J.
Varma
,
B. S. K.
Naidu
, and
A. R. G.
Rao
, “
Silting problems in hydro power plants
,” in
Proceedings of the First International Conference, New Delhi, India, 13–15 October 1999
(
CRC Press
,
2000
).
7.
X.
Song
,
R.
Yao
,
Y.
Shen
,
H.
Bi
,
Y.
Zhang
,
L.
Du
, and
Z.
Wang
, “
Numerical prediction of erosion based on the solid-liquid two-phase flow in a double-suction centrifugal pump
,”
J. Mar. Sci. Eng.
9
,
836
(
2021
).
8.
A. K.
Rai
,
A.
Kumar
,
T.
Staubli
, and
X.
Yexiang
, “
Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines
,”
Renewable Energy
160
,
396
408
(
2020
).
9.
K. R.
Rakeshasharma
,
M. K.
Padhy
,
A.
Hota
, and
S. K.
Sarangi
, “
A literature survey on silt erosion and cavitation in hydro turbine
,” in
International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES)
,
2016
.
10.
N.
Hangen
and
H.
Zigan
, “
Impact of shock waves of bubble collapse on solid particles carried by flow fields
,”
J. Dalian Univ. Technol.
34
(6)
,
727
731
(
1994
).
11.
K.
Su
,
J.
Wu
, and
D.
Xia
, “
Dual role of microparticles in synergistic cavitation-particle erosion: Modeling and experiments
,”
Wear
470–471
,
203633
(
2021
).
12.
L. A.
Teran
,
S.
Laín
, and
S. A.
Rodríguez
, “
Synergy effect modelling of cavitation and hard particle erosion: Implementation and validation
,”
Wear
478–479
,
203901
(
2021
).
13.
Y.
Wang
,
L.
Tan
,
X.
Liu
, and
D.
Chen
, “
Experimental and computational capture of high frequency oscillation induced by inception cavitation in submerged shear layer
,”
IOP Conf. Ser.: Earth Environ. Sci.
240
,
062016
(
2019
).
14.
R.
Romero
,
L.
Teran
,
J.
Coronado
,
J.
Ladino
, and
S.
Rodríguez
, “
Synergy between cavitation and solid particle erosion in an ultrasonic tribometer
,”
Wear
428–429
,
395
403
(
2019
).
15.
H.
Amarendra
,
G.
Chaudhari
, and
S.
Nath
, “
Synergy of cavitation and slurry erosion in the slurry pot tester
,”
Wear
290–291
,
25
31
(
2012
).
16.
C.
Wang
,
L.
Tan
,
M.
Chen
,
H.
Fan
, and
D.
Liu
, “
A review on synergy of cavitation and sediment erosion in hydraulic machinery
,”
Front. Energy Res.
10
,
1
(
2022
).
17.
B.
Gregorc
,
M.
Hriberek
, and
A.
Predin
, “
The analysis of the impact of particles on cavitation flow development
,”
J. Fluids Eng.
133
,
111304
(
2011
).
18.
S.-Y.
Chen
,
W.-L.
Xu
,
J.
Luo
,
J.-B.
Li
, and
Y.-W.
Zhai
, “
Experimental study on the mesoscale causes of the effect of sediment size and concentration on material cavitation erosion in sandy water
,”
Wear
488–489
,
204114
(
2022
).
19.
W.
Xiu-l
,
W.
Xiuli
,
Z.
Junjie
,
Z.
Rongsheng
, and
F.
Qiang
, “
Analysis of the influence of the solid particle content on the-cavitation characteristics of a centrifugal pump
,”
J. Eng. Therm. Energy Power
34
(6)
,
202
207
(
2014
).
20.
L.
Teran
,
S.
Rodríguez
,
S.
Laín
, and
S.
Jung
, “
Interaction of particles with a cavitation bubble near a solid wall
,”
Phys. Fluids
30
,
123304
(
2018
).
21.
2022 China river sediment bulletin
,” in
Water Resources Development and Management
(
2023
), http://www.mwr.gov.cn/xw/slyw/202306/t20230629_1672389.html.
22.
B.
Sreedhar
,
S.
Albert
, and
A.
Pandit
, “
Cavitation damage: Theory and measurements—A review
,”
Wear
372–373
,
177
196
(
2017
).
23.
D.
Ezekoye
,
Z. Y.
Zheng
, and
J.
Wu
, “
Numerical implementation and verification of the Zwart-Gerber-Belamri cavitation model with the consideration of thermodynamic effect
,”
J. Phys.: Conf. Ser.
2707
,
012135
(
2024
).
24.
V. H.
Man
,
M. S.
Li
,
P.
Derreumaux
, and
P. H.
Nguyen
, “
Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study
,”
J. Chem. Phys.
148
,
094505
(
2018
).
25.
H.
Nan
,
R.
Li
, and
W.
Zhou
, “
Study of the separation characteristics of gas-liquid-solid multiphase flow in the impeller of a helical axial flow oil-gas pump
,”
Prog. Comput. Fluid Dyn.
24
,
78
91
(
2024
).
26.
Y.
Zhang
,
E.
Reuterfors
,
B.
McLaury
,
S.
Shirazi
, and
E.
Rybicki
, “
Comparison of computed and measured particle velocities and erosion in water and air flows
,”
Wear
263
,
330
338
(
2006
).
27.
H.
Amarendra
,
G. B.
Hallalli
,
G.
Madhusudhana
,
H.
Mahendra
, and
M. K.
Athani
, “
Effect of cavitation inducers’ apex angle on erosion resistance of SS304 in the slurry pot test rig
,”
Mater. Today: Proc.
5
,
17320
17324
(
2018
).
You do not currently have access to this content.