When a marine propeller rotates in partially submerged conditions, air is entrained from above the undisturbed free-surface, which is called the reference surface, and the ventilated air surrounds the propeller blades, causing thrust loss and excessive vibration, all of which seriously damage the durability of the propeller shaft system of a ship. In the present study, the entry of a propeller blade is simplified by the water entry problem of a sphere moving along a circular path at a constant speed. A high-speed camera was employed to capture the rapidly changing flow structures in detail. Above the reference surface, we focused on the free-surface disturbances, including splash and dome formation. Beneath the reference surface, the development and collapse of ventilated cavities, followed by the line-vortex cavity and cavity undulation, were observed. The ventilated cavity of the present study appears to be more elongated than those of the free-falling sphere's water entry experiments. Two parallel vortical structures appeared after the cavity pinch-off, and bubbles were entrained into these structures to form the line-vortex cavity. The sphere's drag was directly measured via the torque meter attached to the sphere's rotating axis. The relation between the measured drag and the flow around the sphere was identified.

1.
Aristoff
,
J. M.
and
Bush
,
J. W. M.
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
2.
Breton
,
T.
,
Tassin
,
A.
, and
Jacques
,
N.
, “
Experimental investigation of the water entry and/or exit of axisymmetric bodies
,”
J. Fluid Mech.
901
,
A37
(
2020
).
3.
Califano
,
A.
and
Steen
,
S.
, “
Identification of ventilation regimes of a marine propeller by means of dynamic-loads analysis
,”
Ocean Eng.
38
,
1600
1610
(
2011
).
4.
Cao
,
M.
,
Shao
,
Z.
,
Wu
,
S.
,
Dong
,
C.
, and
Yang
,
X.
, “
Numerical and experimental study of cone-headed projectile entering water vertically based on MMALE method
,”
Int. J. Nav. Archit. Ocean Eng.
13
,
877
888
(
2021
).
5.
Chang
,
Y.
and
Tong
,
A. Y.
, “
A numerical study on water entry of cylindrical projectiles
,”
Phys. Fluids
33
,
093304
(
2021
).
6.
Cui
,
W.
,
Kong
,
D.
,
Sun
,
T.
, and
Yan
,
G.
, “
Coupling dynamic characteristics of high-speed water-entry projectile and ice sheet
,”
Ocean Eng.
275
,
114090
(
2023
).
7.
Del Buono
,
A.
,
Bernardini
,
G.
,
Tassin
,
A.
, and
Iafrati
,
A.
, “
Water entry and exit of 2D and axisymmetric bodies
,”
J. Fluids Struct.
103
,
103269
(
2021
).
8.
Duclaux
,
V.
,
Caillé
,
F.
,
Duez
,
C.
,
Ybert
,
C.
,
Bocquet
,
L.
, and
Clanet
,
C.
, “
Dynamics of transient cavities
,”
J. Fluid Mech.
591
,
1
19
(
2007
).
9.
Duez
,
C.
,
Ybert
,
C.
,
Clanet
,
C.
, and
Bocquet
,
L.
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
10.
Grumstrup
,
T.
,
Keller
,
J. B.
, and
Belmonte
,
A.
, “
Cavity ripples observed during the impact of solid objects into liquids
,”
Phys. Rev. Lett.
99
,
114502
(
2007
).
11.
Guo
,
C.-Y.
,
Wu
,
Y.-Y.
,
Han
,
Y.
,
Ji
,
M.-L.
,
Wang
,
Y.-H.
, and
Kuai
,
Y.-F.
, “
Numerical investigation of the influence of surface wettability on water entry of spheres
,”
Phys. Fluids
35
,
063325
(
2023
).
12.
Ha
,
J.
,
Park
,
J.
,
Park
,
G.
,
Kim
,
J.
,
Kim
,
J.
,
Seo
,
J.
, and
Rhee
,
S. H.
, “
Experimental study on the propulsion performance of a partially submerged propeller
,”
Int. J. Nav. Archit. Ocean Eng.
15
,
100516
(
2023
).
13.
Kiara
,
A.
,
Paredes
,
R.
, and
Yue
,
D. K.
, “
Numerical investigation of the water entry of cylinders without and with spin
,”
J. Fluid Mech.
814
,
131
164
(
2017
).
14.
Kim
,
N.
and
Park
,
H.
, “
Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions
,”
J. Fluid Mech.
863
,
757
788
(
2019
).
15.
Kintea
,
D.
,
Breitenbach
,
J.
,
Thammanna Gurumurthy
,
V.
,
Roisman
,
I.
, and
Tropea
,
C.
, “
On the influence of surface tension during the impact of particles on a liquid-gaseous interface
,”
Phys. Fluids
28
,
012108
(
2016
).
16.
Korobkin
,
A.
and
Pukhnachov
,
V.
, “
Initial stage of water impact
,”
Annu. Rev. Fluid Mech.
20
,
159
185
(
1988
).
17.
Kozlowska
,
A. M.
and
Steen
,
S.
, “
Experimental analysis on the risk of vortex ventilation and the free surface ventilation of marine propellers
,”
Appl. Ocean Res.
67
,
201
212
(
2017
).
18.
Li
,
D.
,
Zhang
,
M.
,
Huang
,
B.
,
Li
,
L.
, and
Hu
,
W.
, “
Combined experimental and numerical investigation of multiphase flow during water entry of spheres with different densities
,”
Int. J. Multiphase Flow
161
,
104354
(
2023a
).
19.
Li
,
D.
,
Zhao
,
X.
,
Kong
,
D.
,
Shentu
,
J.
,
Wang
,
G.
, and
Huang
,
B.
, “
Numerical investigation of the water entry of a hydrophobic sphere with spin
,”
Int. J. Multiphase Flow
126
,
103234
(
2020
).
20.
Li
,
Z.
,
Zhang
,
D.
,
Liu
,
Y.
, and
Gao
,
N.
, “
Time-averaged flow field behind a transversely spinning sphere: An experimental study
,”
Phys. Fluids
35
,
035125
(
2023b
).
21.
Liu
,
H.
,
Zhou
,
B.
,
Han
,
X.
,
Zhang
,
T.
,
Zhou
,
B.
, and
Gho
,
W. M.
, “
Numerical simulation of water entry of an inclined cylinder
,”
Ocean Eng.
215
,
107908
(
2020
).
22.
Lu
,
L.
,
Wang
,
C.
,
Li
,
Q.
, and
Sahoo
,
P. K.
, “
Numerical investigation of water-entry characteristics of high-speed parallel projectiles
,”
Int. J. Nav. Archit. Ocean Eng.
13
,
450
465
(
2021
).
23.
Lu
,
L.
,
Yan
,
X.
,
Li
,
Q.
,
Wang
,
C.
, and
Shen
,
K.
, “
Numerical study on the water-entry of asynchronous parallel projectiles at a high vertical entry speed
,”
Ocean Eng.
250
,
111026
(
2022
).
24.
Lyu
,
X.
,
Wang
,
X.
,
Qi
,
C.
, and
Sun
,
R.
, “
Characteristics of cavity dynamics, forces, and trajectories on vertical water entries with two spheres side-by-side
,”
Phys. Fluids
35
,
092101
(
2023
).
25.
Magnaudet
,
J.
and
Mercier
,
M. J.
, “
Particles, drops, and bubbles moving across sharp interfaces and stratified layers
,”
Annu. Rev. Fluid Mech.
52
,
61
91
(
2020
).
26.
Mansoor
,
M. M.
,
Marston
,
J.
,
Vakarelski
,
I. U.
, and
Thoroddsen
,
S. T.
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
27.
Marston
,
J. O.
,
Truscott
,
T. T.
,
Speirs
,
N. B.
,
Mansoor
,
M. M.
, and
Thoroddsen
,
S. T.
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
28.
Park
,
J.
,
Choi
,
J. H.
,
Lee
,
H-h.
, and
Rhee
,
S. H.
, “
Experimental study on the effects of stern bulb arrangement on the slamming load
,”
Int. J. Nav. Archit. Ocean Eng.
12
,
518
530
(
2020
).
29.
Shi
,
Y.
,
Wang
,
G.
, and
Pan
,
G.
, “
Experimental study on cavity dynamics of projectile water entry with different physical parameters
,”
Phys. Fluids
31
,
067103
(
2019
).
30.
Song
,
Z.
,
Duan
,
W.
,
Xu
,
G.
, and
Zhao
,
B.
, “
Experimental and numerical study of the water entry of projectiles at high oblique entry speed
,”
Ocean Eng.
211
,
107574
(
2020
).
31.
Speirs
,
N. B.
,
Mansoor
,
M. M.
,
Belden
,
J.
, and
Truscott
,
T. T.
, “
Water entry of spheres with various contact angles
,”
J. Fluid Mech.
862
,
R3
(
2019
).
32.
Sun
,
S.-Y.
and
Wu
,
G. X.
, “
Local flow at plate edge during water entry
,”
Phys. Fluids
32
,
072103
(
2020
).
33.
Sun
,
S. Y.
,
Zeng
,
F.
,
Yang
,
Y.
, and
Wang
,
W.
, “
Oblique water entry of a curved foil with varying speed
,”
Phys. Fluids
35
,
122101
(
2023
).
34.
Sun
,
T.
,
Wang
,
H.
,
Zong
,
Z.
,
Zhang
,
G.
,
Wang
,
A.
, and
Xu
,
C.
, “
Splash formation and cavity dynamics of sphere entry through a viscous liquid resting on the water
,”
AIP Adv.
9
,
075211
(
2019
).
35.
Techet
,
A. H.
and
Truscott
,
T. T.
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
,
716
726
(
2011
).
36.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Belden
,
J.
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
37.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Techet
,
A. H.
, “
Unsteady forces on spheres during free-surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
38.
Truscott
,
T. T.
and
Techet
,
A. H.
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
39.
Wang
,
X.
and
Lyu
,
X.
, “
Experimental study on vertical water entry of twin spheres side-by-side
,”
Ocean Eng.
221
,
108508
(
2021
).
40.
Yang
,
L.
,
Wei
,
Y.
,
Wang
,
C.
,
Xia
,
W.
, and
Li
,
Y.
, “
A numerical study on nested cavities during the water entry of deformable elastic spheres
,”
Int. J. Multiphase Flow
144
,
103773
(
2021
).
41.
Yuan
,
Q.
,
Hong
,
Y.
,
Zhao
,
Z.
, and
Gong
,
Z.
, “
Water–air two-phase flow during entry of a sphere into water using particle image velocimetry and smoothed particle hydrodynamics
,”
Phys. Fluids
34
,
032105
(
2022
).
42.
Zhang
,
Q.
,
Zong
,
Z.
,
Li
,
H. T.
, and
Sun
,
T. Z.
, “
Experimental study of the impact of splash closure on the cavity evolution behind a sphere entering water
,”
Phys. Fluids
34
,
042118
(
2022
).
43.
Zhou
,
B.
,
Liu
,
H.
,
Wang
,
Y.
,
Wu
,
Z.
,
Han
,
X.
, and
Gho
,
W. M.
, “
Numerical investigation on the cavity dynamics and multiphase flow field evolution for water entry of vertical cylindrical shell
,”
J. Fluids Struct.
103
,
103268
(
2021
).
You do not currently have access to this content.