This work describes a scale-translating simulation framework to investigate gas adsorption behavior in nanoconfined pores. The framework combines molecular simulations (MSs), equation of state (EoS), and lattice Boltzmann (LB) simulations. MSs reveal the physics of methane adsorption in nano-sized pores, where input values of fugacity coefficients are optimized based on EoS predictions. Then, an LB free-energy model, which incorporates a viral EoS, upscales intermolecular forces and estimates adsorption behavior via a proposed fluid–wall interaction model. Armed with the values of the LB interaction parameter as a function of pressure, the LB model is used to predict fluid behavior in irregular nanopores, and the results are validated against reference MS data. The LB model is then used to study adsorption behavior at a continuum scale in representative organic shale nanopores based on finely characterized Vaca Muerta shale samples. The results show that methane adsorption could significantly increase contained fluids by 10%–25% in pores smaller than 20 nm. However, in larger pores (40 nm to 90 nm), adsorption's impact diminishes to 2%–3%, suggesting sorption's negligible role beyond a 40 nm pore size.

1.
U.S. Energy Information Administration
see https://www.eia.gov/tools/faqs/faq.php?id=907&t=8#:~:text=The%20U.S.%20Energy%20Information%20Administration,natural%20gas%20production%20in%202022 for “
How much shale gas is produced in the United States?
” (accessed January 9, 2024).
2.
I. C.
Bourg
, “
Sealing shales versus brittle shales: A sharp threshold in the material properties and energy technology uses of fine-grained sedimentary rocks
,”
Environ. Sci. Technol. Lett.
2
,
255
259
(
2015
).
3.
X.
Zheng
and
D. N.
Espinoza
, “
Stochastic quantification of CO2 fault sealing capacity in sand-shale sequences
,”
Mar. Pet. Geol.
146
,
105961
(
2022
).
4.
Y.
Mehmani
,
T.
Anderson
,
Y.
Wang
,
S. A.
Aryana
,
I.
Battiato
,
H. A.
Tchelepi
, and
A. R.
Kovscek
, “
Striving to translate shale physics across ten orders of magnitude: What have we learned?
,”
Earth-Sci. Rev.
223
,
103848
(
2021
).
5.
L.
Liu
,
C.
Nieto-Draghi
,
V.
Lachet
,
E.
Heidaryan
, and
S. A.
Aryana
, “
Bridging confined phase behavior of CH4-CO2 binary systems across scales
,”
J. Supercrit. Fluids
189
,
105713
(
2022
).
6.
T.
Zhang
,
F.
Javadpour
,
J.
Li
,
Y.
Zhao
,
L.
Zhang
, and
X.
Li
, “
Pore-scale perspective of gas/water two-phase flow in shale
,”
SPE J.
26
,
828
846
(
2021
).
7.
Z.
Kou
,
D.
Zhang
,
Z.
Chen
, and
Y.
Xie
, “
Quantitatively determine CO2 geosequestration capacity in depleted shale reservoir: A model considering viscous flow, diffusion, and adsorption
,”
Fuel
309
,
122191
(
2022
).
8.
N.
Rustamov
,
L.
Liu
, and
S. A.
Aryana
, “
Scalable simulation of coupled adsorption and transport of methane in confined complex porous media with density preconditioning
,”
Gas Sci. Eng.
119
,
205131
(
2023
).
9.
Y.
Zhao
,
M.
Luo
,
L.
Liu
,
J.
Wu
,
M.
Chen
, and
L.
Zhang
, “
Molecular dynamics simulations of shale gas transport in rough nanopores
,”
J. Pet. Sci. Eng.
217
,
110884
(
2022
).
10.
J.
Wu
,
P.
Huang
,
F.
Maggi
, and
L.
Shen
, “
Effect of sorption-induced deformation on methane flow in kerogen slit pores
,”
Fuel
325
,
124886
(
2022
).
11.
W.
Li
,
J.
Cao
,
Y.
Liang
,
Y.
Masuda
,
T.
Tsuji
,
K.
Tamura
,
T.
Ishiwata
,
D.
Kuramoto
, and
T.
Matsuoka
, “
Molecular simulation of methane/ethane mixture adsorption behavior in shale nanopore systems with micropores and mesopores
,”
Fuel
358
,
130294
(
2024
).
12.
L.
Liu
,
Y.
Zhao
,
M.
Luo
,
L.
Zhang
, and
S. A.
Aryana
, “
Bridging adsorption behavior of confined CH4-CO2 binary mixtures across scales
,”
Fuel
354
,
129310
(
2023
).
13.
J.
He
,
Y.
Ju
,
K.
Kulasinski
,
L.
Zheng
, and
L.
Lammers
, “
Molecular dynamics simulation of methane transport in confined organic nanopores with high relative roughness
,”
J. Nat. Gas Sci. Eng.
62
,
202
213
(
2019
).
14.
H.
Yu
,
J.
Fan
,
J.
Xia
,
H.
Liu
, and
H.
Wu
, “
Multiscale gas transport behavior in heterogeneous shale matrix consisting of organic and inorganic nanopores
,”
J. Nat. Gas Sci. Eng.
75
,
103139
(
2020
).
15.
T. A.
Ho
,
Y.
Wang
,
Y.
Xiong
, and
L. J.
Criscenti
, “
Differential retention and release of CO2 and CH4 in kerogen nanopores: Implications for gas extraction and carbon sequestration
,”
Fuel
220
,
1
7
(
2018
).
16.
D.-Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fund.
15
,
59
64
(
1976
).
17.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
18.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow
,”
Phys. Rev. E
77
,
036707
(
2008
).
19.
Y.
Wang
and
S. A.
Aryana
, “
Pore-scale simulation of gas flow in microscopic permeable media with complex geometries
,”
J. Nat. Gas Sci. Eng.
81
,
103441
(
2020
).
20.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
(
1993
).
21.
Y.
Wang
and
S. A.
Aryana
, “
Coupled confined phase behavior and transport of methane in slit nanopores
,”
Chem. Eng. J.
404
,
126502
(
2021
).
22.
K.
Timm
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E.
Viggen
,
The Lattice Boltzmann Method: Principles and Practice
(
Springer
,
2016
).
23.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
,
042101
(
2006
).
24.
L.
Liu
,
Y.
Wang
, and
S. A.
Aryana
, “
Insights into scale translation of methane transport in nanopores
,”
J. Nat. Gas Sci. Eng.
96
,
104220
(
2021
).
25.
M.
Soomro
,
L. F.
Ayala
,
C.
Peng
, and
O. M.
Ayala
, “
Fugacity-based lattice Boltzmann method for multicomponent multiphase systems
,”
Phys. Rev. E
107
,
015304
(
2023
).
26.
M.
Benedict
,
G. B.
Webb
, and
L. C.
Rubin
, “
An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane
,”
J. Chem. Phys.
8
,
334
345
(
1940
).
27.
G. S.
Soave
, “
An effective modification of the Benedict-Webb-Rubin equation of state
,”
Fluid Phase Equilib.
164
,
157
172
(
1999
).
28.
L.
Froute
and
A. R.
Kovscek
, “
Nano-imaging of shale using electron microscopy techniques
,” in
SPE/AAPG/SEG Unconventional Resources Technology Conference
(
URTeC
,
2020
).
29.
L.
Frouté
,
E.
Boigné
,
I. C.
Jolivet
,
E.
Chaput
,
P.
Creux
,
M.
Ihme
, and
A. R.
Kovscek
, “
Evaluation of electron tomography capabilities for shale imaging
,”
Microsc. Microanal.
29
,
1856
1869
(
2023
).
30.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
,
2569
2577
(
1998
).
31.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
,
Thermophysical Properties of Fluid Systems
(
National Institute of Standards and Technology
,
2010
).
32.
P. K.
Saha
,
G.
Borgefors
, and
G. S.
di Baja
, “
A survey on skeletonization algorithms and their applications
,”
Pattern Recognit. Lett.
76
,
3
12
(
2016
).

Supplementary Material

You do not currently have access to this content.