The drop-on-demand electrohydrodynamic (EHD) printing is promising for manufacturing high-resolution dot arrays. Such dot fabrication is commonly achieved through two printing modes (jet/droplet mode), i.e., continuous jet directly flying to or broken jet induced droplet depositing in the substrate. The droplet mode commonly has a higher printing frequency than the jet mode, indicating the droplet mode's advantage in drop-on-demand EHD printing. However, most research on EHD printing focuses on the jet mode, which causes the mechanism of droplet production through jet pinch-off remains unclear. This study employs an arbitrary Lagrangian–Eulerian method capable of getting a sharp interface to reveal the pinch-off mechanism. First, the development of a tip streaming from a meniscus to the pinch-off is analyzed. It is found that the high pressure at the neck is the main reason for the pinch-off of the jet into the droplet. Second, the EHD phase diagram in the parameter space of WeCae is plotted, where We is the Weber number and Cae is the electric capillary number. Finally, the important influences of the charge relaxation on the EHD tip streaming jet's breakup behavior and the generated droplets' properties are revealed. Evolutions of the droplet's properties, including radius, velocity, and charge, with varying charge relaxation parameters are offered. These properties of the droplet show their relationships with extreme values as a function of the charge relaxation parameter. This work can serve as the theoretical basis for tuning the EHD printing manufacturing performance.

1.
J. U.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D. K.
Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
,
J. G.
Georgiadis
,
P. M.
Ferreira
, and
J. A.
Rogers
, “
High-resolution electrohydrodynamic jet printing
,”
Nat. Mater.
6
,
782
789
(
2007
).
2.
Z. P.
Yin
,
Y. A.
Huang
,
H.
Yang
,
J. K.
Chen
,
Y. Q.
Duan
, and
W.
Chen
, “
Flexible electronics manufacturing technology and equipment
,”
Sci. China Technol. Sci.
65
(
9
),
1940
1956
(
2022
).
3.
M. H.
Zhu
,
Y. Q.
Duan
,
N.
Liu
,
H. G.
Li
,
J. H.
Li
,
P. P.
Du
,
Z. F.
Tan
,
G. D.
Niu
,
L.
Gao
,
Y. A.
Huang
,
Z. P.
Yin
, and
J.
Tang
, “
Electrohydrodynamically printed high-resolution full-color hybrid perovskites
,”
Adv. Funct. Mater.
29
(
35
),
1903294
(
2019
).
4.
Z.
Cui
,
Y. W.
Han
,
Q. J.
Huang
,
J. Y.
Dong
, and
Y.
Zhu
, “
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics
,”
Nanoscale
10
(
15
),
6806
6811
(
2018
).
5.
J. K.
He
,
B.
Zhang
,
Z.
Li
,
M.
Mao
,
J. X.
Li
,
K.
Han
, and
D. C.
Li
, “
High-resolution electrohydrodynamic bioprinting: A new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs
,”
Biofabrication
12
(
4
),
042002
(
2020
).
6.
Z. P.
Yin
,
Y. A.
Huang
,
N. B.
Bu
,
X. M.
Wang
, and
Y. L.
Xiong
, “
Inkjet printing for flexible electronics: Materials, processes and equipments
,”
Chin. Sci. Bull.
55
(
30
),
3383
3407
(
2010
).
7.
J. M.
Montanero
and
A. M.
Ganán-Calvo
, “
Dripping, jetting and tip streaming
,”
Rep. Prog. Phys.
83
,
097001
(
2020
).
8.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
9.
F. R. S.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1-10
,
4
13
(
1878
).
10.
J. A. F.
Plateau
, “
I. Experimental and theoretical researches on the figure of equilibrium of a liquid mass withdrawn from the action of gravity. Third series
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
14
,
1
22
(
1857
).
11.
R. T.
Collins
,
M. T.
Harris
, and
O. A.
Basaran
, “
Breakup of electrified jets
,”
J. Fluid Mech.
588
,
75
129
(
2007
).
12.
Q. C.
Nie
,
F.
Li
,
Q. L.
Ma
,
H. S.
Fang
, and
Z. P.
Yin
, “
Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets
,”
J. Fluid Mech.
925
,
A4
(
2021
).
13.
K.
Misra
and
M.
Gamero-Castaño
, “
Leaky-dielectric phase field model for the axisymmetric breakup of an electrified jet
,”
Phys. Rev. Fluids
7
(
6
),
064004
(
2022
).
14.
F. R. S.
Rayleigh
, “
On the equilibrium of liquid conducting masses charged with electricity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
14
,
184
186
(
1882
).
15.
H. A.
Stone
,
B. J.
Bentley
, and
L. G.
Leal
, “
An experimental study of transient effects in the breakup of viscous drops
,”
J. Fluid Mech.
173
,
131
158
(
1986
).
16.
R. M. S. M.
Schulkes
, “
The contraction of liquid filaments
,”
J. Fluid Mech.
309
,
277
300
(
1996
).
17.
H. A.
Stone
and
L. G.
Leal
, “
Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid
,”
J. Fluid Mech.
198
,
399
427
(
1989
).
18.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
102
(
1994
).
19.
A. A.
Castrejón-Pita
,
J. R.
Castrejón-Pita
, and
I. M.
Hutchings
, “
Breakup of liquid filaments
,”
Phys. Rev. Lett.
108
,
074506
(
2012
).
20.
T.
Driessen
,
R.
Jeurissen
,
H.
Wijshoff
,
F.
Toschi
, and
D.
Lohse
, “
Stability of viscous long liquid filaments
,”
Phys. Fluids
25
,
062109
(
2013
).
21.
F.
Wang
,
F. P.
Contò
,
N.
Naz
,
J. R.
Castrejón-Pita
,
A. A.
Castrejón-Pita
,
C. G.
Bailey
,
W.
Wang
,
J. J.
Feng
, and
Y.
Sui
, “
A fate-alternating transitional regime in contracting liquid filaments
,”
J. Fluid Mech.
860
,
640
653
(
2019
).
22.
J.
Hoepffner
and
G.
Paré
, “
Recoil of a liquid filament: Escape from pinch-off through creation of a vortex ring
,”
J. Fluid Mech.
734
,
183
197
(
2013
).
23.
P. M.
Kamat
,
B. W.
Wagoner
,
A. A.
Castrejón-Pita
,
J. R.
Castrejón-Pita
,
C. R.
Anthony
, and
O. A.
Basaran
, “
Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments
,”
J. Fluid Mech.
899
,
A28
(
2020
).
24.
R.
Suryo
and
O. A.
Basaran
, “
Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid
,”
Phys. Fluids
18
,
082102
(
2006
).
25.
R. T.
Collins
,
J. J.
Jones
,
M. T.
Harris
, and
O. A.
Basaran
, “
Electrohydrodynamic tip streaming and emission of charged drops from liquid cones
,”
Nat. Phys.
4
,
149
154
(
2008
).
26.
R. T.
Collins
,
K.
Sambath
,
M. T.
Harris
, and
O. A.
Basaran
, “
Universal scaling laws for the disintegration of electrified drops
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
13
),
4905
4910
(
2013
).
27.
N.
Gawande
,
Y. S.
Mayya
, and
R.
Thaokar
, “
Jet and progeny formation in the Rayleigh breakup of a charged viscous drop
,”
J. Fluid Mech.
884
,
A31
(
2020
).
28.
K.
Misra
and
M.
Gamero-Castaño
, “
Ion emission from nanodroplets undergoing Coulomb explosions: A continuum numerical study
,”
J. Fluid Mech.
958
,
A32
(
2023
).
29.
A.
Ponce-Torres
,
N.
Rebollo-Muñoz
,
M. A.
Herrada
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
The steady cone-jet mode of electrospraying close to the minimum volume stability limit
,”
J. Fluid Mech.
857
,
142
172
(
2018
).
30.
H.
Chen
,
G. Z.
Wang
,
A.
Tao
,
Z. P.
Yin
, and
H. S.
Fang
, “
Modelling the first droplet emission from an electrified liquid meniscus hanging at the nozzle tip
,”
J. Fluid Mech.
987
,
A38
(
2024
).
31.
Y.
Guan
,
S.
Wu
,
M. D.
Wang
,
Y.
Tian
,
C. P.
Yu
,
W. X.
Lai
, and
Y. A.
Huang
, “
Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers
,”
Phys. Fluids
34
(
1
),
012001
(
2022
).
32.
S.
Cândido
and
J. C.
Páscoa
, “
Dynamics of three-dimensional electrohydrodynamic instabilities on Taylor cone jets using a numerical approach
,”
Phys. Fluids
35
,
052110
(
2023
).
33.
C.
Narváez-Muñoz
,
M. R.
Hashemi
,
P. B.
Ryzhakov
, and
J.
Pons-Prats
, “
An enriched finite element/level-set model for two-phase electrohydrodynamic simulations
,”
Phys. Fluids
35
,
012004
(
2023
).
34.
S.
Santra
,
S.
Mandal
, and
S.
Chakraborty
, “
Electrohydrodynamics of confined two-dimensional liquid droplets in uniform electric field
,”
Phys. Fluids
30
,
062003
(
2018
).
35.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian–Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
(
3
),
227
253
(
1974
).
36.
C. R.
Anthony
,
H.
Wee
,
V.
Garg
,
S. S.
Thete
,
P. M.
Kamat
,
B. W.
Wagoner
,
E. D.
Wilkes
,
P. K.
Notz
,
A. U.
Chen
,
R.
Suryo
,
K.
Sambath
,
J. C.
Panditaratne
,
Y. C.
Liao
, and
O. A.
Basaran
, “
Sharp interface methods for simulation and analysis of free surface flows with singularities: Breakup and coalescence
,”
Annu. Rev. Fluid Mech.
55
,
707
747
(
2023
).
37.
H.
Chen
,
W.
Chen
,
Z. P.
Yin
, and
H. S.
Fang
, “
Electrohydrodynamic-induced partial coalescence between a droplet and a liquid–air interface
,”
J. Fluid Mech.
963
,
A39
(
2023
).
38.
V.
Chirkov
,
I.
Dobrovolskii
, and
S.
Vasilkov
, “
The interaction between two electrohydrodynamics phenomena when an electric field affects a two-phase immiscible liquid
,”
Phys. Fluids
33
,
043310
(
2021
).
39.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
146
(
1969
).
40.
I.
Marginean
,
P.
Nemes
, and
A.
Vertes
, “
Order-chaos-order transitions in electrosprays: The electrified dripping faucet
,”
Phys. Rev. Lett.
97
,
064502
(
2006
).
41.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
64
(
1997
).
42.
W. M.
Deen
,
Analysis of Transport Phenomena
(
Oxford University Press
,
New York
,
1998
).
43.
B. W.
Wagoner
,
P. M.
Vlahovska
,
M. T.
Harris
, and
O. A.
Basaran
, “
Electrohydrodynamics of lenticular drops and equatorial streaming
,”
J. Fluid Mech.
925
,
A36
(
2021
).
44.
J. C.
Butcher
,
Numerical Methods for Ordinary Differential Equations
(
John Wiley & Sons
,
Chichester
,
2016
).
45.
O. H.
Yeoh
, “
Some forms of the strain energy function for rubber
,”
Rubber Chem. Technol.
66
,
754
771
(
1993
).
46.
P. R.
Amestoy
,
I. S.
Duff
, and
J. Y.
L'Excellent
, “
Multifrontal parallel distributed symmetric and unsymmetric solvers
,”
Comput. Methods Appl. Mech. Eng.
184
(
2–4
),
501
520
(
2000
).
47.
S. P.
Sutera
and
R.
Skalak
, “
The history of Poiseuille's law
,”
Annu. Rev. Fluid Mech.
25
,
1
19
(
1993
).
48.
M.
Cloupeau
and
B.
Prunet-Foch
, “
Electrohydrodynamic spraying functioning modes: A critical review
,”
J. Aerosol Sci.
25
(
6
),
1021
1036
(
1994
).
49.
M.
Rubio
,
P.
Rodríguez-Díaz
,
J. M.
López-Herrera
,
M. A.
Herrada
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
The role of charge relaxation in electrified tip streaming
,”
Phys. Fluids
35
,
017131
(
2023
).
You do not currently have access to this content.