CO2 possesses several advantages, including strong solubility, effective viscosity reduction ability, and low miscible pressure, making it a promising candidate for enhanced oil recovery (EOR). Additionally, due to its adsorption capture mechanism, shale formations are considered ideal environments for CO2 storage. However, the influence of heterogeneity of shale multi-scale structure on CO2 migration mechanism, EOR, and storage mechanism is not clear. In this study, a heterogeneous shale structure model containing fractures and matrix was designed based on scanning electron microscope. The multiphase–multicomponent–multirelaxation model was used to study the fluid migration mechanism in the process of miscible CO2 huff-n-puff in shale reservoir. By analyzing density variations, velocity changes, and pressure distributions, the effects of diffusion coefficient, adsorption parameters, and fracture size were studied. Furthermore, by changing the matrix structure, the influence of heterogeneity on the law of oil and gas migration was explored. Additionally, a comparison between CO2 and water was performed. Finally, the influence of reservoir heterogeneity on fluid transport mechanism was studied. The results show that EOR and CO2 storage rate (CSR) are proportional to the diffusion coefficient. The main factor affecting the CSR is the adsorption capacity of rock to CO2. The larger CO2–oil contact area between the fracture and the matrix leads to a larger CSR, highlighting the importance of induced fractures. In addition, it was found that CO2 huff-n-puff was superior to water flooding, showing an EOR performance advantage of about 15%. This study is helpful for the practical application of CO2 huff-n-puff technology in the field of unconventional oil and gas development and CO2 storage.

1.
Q.
Sang
,
X.
Zhao
,
Y.
Liu
,
Z.
Li
, and
M.
Dong
, “
Effects of the laminated-structure and mixed wettability on the oil/water relative permeabilities and oil productions in shale oil formations
,”
J. Pet. Sci. Eng.
208
,
109457
(
2022
).
2.
R. G.
Loucks
,
R. M.
Reed
,
S. C.
Ruppel
, and
U.
Hammes
, “
Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores
,”
Bulletin
96
(
6
),
1071
1098
(
2012
).
3.
E.
Rylander
,
M. S.
Philip
,
T.
Jiang
, and
R.
Lewis
, “
NMR T2 distributions in the Eagle Ford shale: Reflections on pore size
,” SPE Paper No. SPE-164554-MS,
2013
.
4.
S.
Wang
,
Q.
Feng
,
F.
Javadpour
,
T.
Xia
, and
Z.
Li
, “
Oil adsorption in shale nanopores and its effect on recoverable oil-in-place
,”
Int. J. Coal Geol.
147–148
,
9
24
(
2015
).
5.
S.
Li
,
M.
Dong
, and
P.
Luo
, “
Simulation study on dissolved oil release from kerogen and its effect on shale oil production under primary depletion and CO2 huff-n-puff
,”
J. Pet. Sci. Eng.
200
,
108239
(
2021
).
6.
Z.
Wei
and
J.
Sheng
, “
Study of thermally-induced enhancement in nanopores, microfractures, porosity and permeability of rocks from different ultra-low permeability reservoirs
,”
J. Pet. Sci. Eng.
209
,
109896
(
2022
).
7.
Y.
Wan
,
C.
Jia
,
W.
Lv
,
N.
Jia
,
L.
Jiang
, and
Y.
Wang
, “
Recovery mechanisms and formation influencing factors of miscible CO2 huff-n-puff processes in shale oil reservoirs: A systematic review
,”
Adv. Geo-Energy Res.
11
(
2
),
88
102
(
2024
).
8.
H.-B.
Li
,
Z.-M.
Yang
,
R.-S.
Li
,
T.-Y.
Zhou
,
H.-K.
Guo
,
X.-W.
Liu
et al, “
Mechanism of CO2 enhanced oil recovery in shale reservoirs
,”
Pet. Sci.
18
(
6
),
1788
1796
(
2021
).
9.
S.
Zhang
,
Y.
Wang
,
H.
Liu
,
S.
Chen
,
M.
Tan
,
Y.
Zhang
et al, “
The control of fine-grained sedimentary microfacies on the microstructure of shale oil reservoirs in Dongying Sag, Bohai Bay Basin
,”
Oil Gas Geol.
37
(
6
),
923
934
(
2016
).
10.
J.
Qigui
,
L.
Maowen
,
Q.
Menhui
,
L.
Zhiming
,
L.
Zheng
,
H.
Zhenkai
,
Z.
Caimin
, and
M.
Yuanyuan
, “
Quantitative characterization of shale oil in different occurrence states and its application
,”
Pet. Geol. Exp.
38
(
6
),
842
849
(
2016
).
11.
T.
Liang
,
F.
Zhou
,
J.
Lu
,
D.
DiCarlo
, and
Q.
Nguyen
, “
Evaluation of wettability alteration and IFT reduction on mitigating water blocking for low-permeability oil-wet rocks after hydraulic fracturing
,”
Fuel
209
,
650
660
(
2017
).
12.
M. A. Q.
Siddiqui
,
S.
Ali
,
H.
Fei
, and
H.
Roshan
, “
Current understanding of shale wettability: A review on contact angle measurements
,”
Earth-Sci. Rev.
181
,
1
11
(
2018
).
13.
R. G.
Loucks
,
R. M.
Reed
,
S. C.
Ruppel
, and
D. M.
Jarvie
, “
Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale
,”
J. Sediment. Res.
79
(
12
),
848
861
(
2009
).
14.
C.
Qin
,
Y.
Jiang
,
J.
Zhou
,
X.
Song
,
Z.
Liu
,
D.
Li
et al, “
Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale
,”
Chem. Eng. J.
412
,
128701
(
2021
).
15.
T.
Zheng
,
Z.
Yang
,
X.
Liu
,
Y.
Luo
,
Q.
Xiao
,
Y.
Zhang
et al, “
Understanding immiscible natural gas huff-N-puff seepage mechanism in porous media: A case study of CH4 huff-N-puff by laboratory numerical simulations in Chang-7 tight core
,”
Nat. Resour. Res.
30
,
2397
2411
(
2021
).
16.
T.
Zeng
,
Y.
Guo
, and
K. K.
Mohanty
, “
Use of hydrocarbon gas to replace CO2 for shale oil huff-n-puff EOR
,” SPE Paper No. URTEC-2021-5447-MS,
2021
.
17.
H.
Chen
,
B.
Li
,
I.
Duncan
,
M.
Elkhider
, and
X.
Liu
, “
Empirical correlations for prediction of minimum miscible pressure and near-miscible pressure interval for oil and CO2 systems
,”
Fuel
278
,
118272
(
2020
).
18.
X.
Bao
,
A.
Fragoso
, and
R.
Aguilera
, “
CCUS and comparison of oil recovery by huff-n-puff gas injection using methane, carbon dioxide, hydrogen and rich gas in shale oil reservoirs
,” SPE Paper No. SPE-212818-MS,
2023
.
19.
T.
Xu
,
H.
Tian
,
H.
Zhu
, and
J.
Cai
, “
China actively promotes CO2 capture, utilization and storage research to achieve carbon peak and carbon neutrality
,”
Adv. Geo-Energy Res.
6
(
1
),
1
3
(
2022
).
20.
L.
Zhang
,
L.
Chen
,
R.
Hu
, and
J.
Cai
, “
Subsurface multiphase reactive flow in geologic CO2 storage: Key impact factors and characterization approaches
,”
Adv. Geo-Energy Res.
6
(
3
),
179
180
(
2022
).
21.
Y.
Gao
,
Q.
Li
,
X.
He
,
H.
Yu
, and
Y.
Wang
, “
Quantitative evaluation of shale-oil recovery during CO2 huff-n-puff at different pore scales
,”
Energy Fuels
35
(
20
),
16607
16616
(
2021
).
22.
D.
Alfarge
,
M.
Wei
, and
B.
Bai
, “
CO2-EOR mechanisms in huff-n-puff operations in shale oil reservoirs based on history matching results
,”
Fuel
226
,
112
120
(
2018
).
23.
A.
Bahadori
,
Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs
(
Gulf Professional Publishing
,
2018
).
24.
H. R.
Lashgari
,
A.
Sun
,
T.
Zhang
,
G. A.
Pope
, and
L. W.
Lake
, “
Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs
,”
Fuel
241
,
1223
1235
(
2019
).
25.
L.
Li
,
Y.
Su
,
J. J.
Sheng
,
Y.
Hao
,
W.
Wang
,
Y.
Lv
et al, “
Experimental and numerical study on CO2 sweep volume during CO2 huff-n-puff enhanced oil recovery process in shale oil reservoirs
,”
Energy Fuels
33
(
5
),
4017
4032
(
2019
).
26.
C.
Zhu
,
Y.
Li
,
H.
Gong
,
Q.
Sang
,
Z.
Li
, and
M.
Dong
, “
Adsorption and dissolution behaviors of carbon dioxide and n-dodecane mixtures in shale
,”
Energy Fuels
32
(
2
),
1374
1386
(
2018
).
27.
W.
Zhou
,
H.
Wang
,
X.
Yang
,
X.
Liu
, and
Y.
Yan
, “
Confinement effects and CO2/CH4 competitive adsorption in realistic shale kerogen nanopores
,”
Ind. Eng. Chem. Res.
59
(
14
),
6696
6706
(
2020
).
28.
L.
Huang
,
Z.
Ning
,
Q.
Wang
,
R.
Qi
,
Z.
Cheng
,
X.
Wu
et al, “
Kerogen deformation upon CO2/CH4 competitive sorption: Implications for CO2 sequestration and enhanced CH4 recovery
,”
J. Pet. Sci. Eng.
183
,
106460
(
2019
).
29.
L.
Huang
,
Z.
Ning
,
Q.
Wang
,
R.
Qi
,
Z.
Cheng
,
X.
Wu
et al, “
Molecular insights into kerogen deformation induced by CO2/CH4 sorption: Effect of maturity and moisture
,”
Energy Fuels
33
(
6
),
4792
4805
(
2019
).
30.
T.
Wan
,
J.
Zhang
, and
Z.
Jing
, “
Experimental evaluation of enhanced shale oil recovery in pore scale by CO2 in Jimusar reservoir
,”
J. Pet. Sci. Eng.
208
,
109730
(
2022
).
31.
H.
Wu
,
Z.
Jin
,
X.
Xu
,
S.
Zhao
, and
H.
Liu
, “
Effect of competitive adsorption on the deformation behavior of nanoslit-confined carbon dioxide and methane mixtures
,”
Chem. Eng. J.
431
,
133963
(
2022
).
32.
S.
Afari
,
K.
Ling
,
B.
Sennaoui
,
D.
Maxey
,
T.
Oguntade
, and
J.
Porlles
, “
Optimization of CO2 huff-n-puff EOR in the Bakken formation using numerical simulation and response surface methodology
,”
J. Pet. Sci. Eng.
215
,
110552
(
2022
).
33.
D. Y.
Moh
,
H.
Zhang
,
S.
Wang
,
X.
Yin
, and
R.
Qiao
, “
Soaking in CO2 huff-n-puff: A single-nanopore scale study
,”
Fuel
308
,
122026
(
2022
).
34.
X.
Zhao
,
Z.
Chen
,
B.
Zhou
,
X.
Liao
,
H.
Wang
, and
B.
Wang
, “
Multiple flow mechanism-based numerical model for CO2 huff-n-puff in shale gas reservoirs with complex fractures
,”
Energy Fuels
37
,
8374
(
2023
).
35.
F.
Li
,
H.
Wang
,
T.
Zhou
, and
L.
Han
, “
The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics
,”
Pet. Drill. Tech.
50
(
2
),
38
44
(
2022
).
36.
W.-Y.
Tang
,
J. J.
Sheng
, and
T.-X.
Jiang
, “
Further discussion of CO2 huff-n-puff mechanisms in tight oil reservoirs based on NMR monitored fluids spatial distributions
,”
Pet. Sci.
20
(
1
),
350
361
(
2023
).
37.
N.
Alharthy
,
T.
Teklu
,
H.
Kazemi
,
R.
Graves
,
S.
Hawthorne
,
J.
Braunberger
, and
B.
Kurtoglu
, “
Enhanced oil recovery in liquid–rich shale reservoirs: Laboratory to field
,”
SPE Reservoir Eval. Eng.
21
(
1
),
137
159
(
2018
).
38.
L.
Chen
,
Q.
Kang
,
Y.
Mu
,
Y.-L.
He
, and
W.-Q.
Tao
, “
A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
,”
Int. J. Heat Mass Transfer
76
,
210
236
(
2014
).
39.
J.
Zhao
,
Q.
Kang
,
J.
Yao
,
L.
Zhang
,
Z.
Li
,
Y.
Yang
, and
H.
Sun
, “
Lattice Boltzmann simulation of liquid flow in nanoporous media
,”
Int. J. Heat Mass Transfer
125
,
1131
1143
(
2018
).
40.
J.
Zhao
,
Q.
Kang
,
J.
Yao
,
H.
Viswanathan
,
R.
Pawar
,
L.
Zhang
, and
H.
Sun
, “
The effect of wettability heterogeneity on relative permeability of two‐phase flow in porous media: A lattice Boltzmann study
,”
Water Resour. Res.
54
(
2
),
1295
1311
, https://doi.org/10.1002/2017WR021443 (
2018
).
41.
H.
Wang
,
W.
Wang
,
Y.
Su
, and
Z.
Jin
, “
Lattice Boltzmann model for oil/water two-phase flow in nanoporous media considering heterogeneous viscosity, liquid/solid, and liquid/liquid slip
,”
SPE J.
27
(
6
),
3508
3524
(
2022
).
42.
H.
Wang
,
Y.
Su
, and
W.
Wang
, “
Improved lattice Boltzmann method to simulate liquid flow in nanoporous media: Coupling molecular dynamics simulations and theoretical model
,”
Adv. Water Resour.
165
,
104239
(
2022
).
43.
S.
Cudjoe
and
R.
Barati
, “
Lattice Boltzmann simulation of CO2 transport in kerogen nanopores—An evaluation of CO2 sequestration in organic-rich shales
,”
J. Earth Sci.
28
(
5
),
926
932
(
2017
).
44.
B.
Moradi
,
A. H.
Moghadam
,
M. R.
Rasaei
, and
A.
Papi
, “
Pore-scale characterization of CO2 front progress through a porous medium using a free energy model based on phase-field lattice Boltzmann method
,”
J. Pet. Sci. Eng.
210
,
110008
(
2022
).
45.
A.
Ashirbekov
,
B.
Kabdenova
,
A.
Kuljabekov
,
E.
Monaco
,
L.
Wang
, and
L.
Rojas-Solórzano
, “
Lattice Boltzmann pseudopotential multiphase modeling of transcritical CO2 flow using a crossover formulation
,”
Adv. Geo-Energy Res.
6
(
6
),
539
540
(
2022
).
46.
L.
Ren
,
Q.
Liu
,
Y.
Ni
,
Y.
Xia
, and
J.
Chen
, “
Study on the ways to improve the CO2–H2O displacement efficiency in heterogeneous porous media by lattice Boltzmann simulation
,”
ACS Omega
7
(
24
),
20833
20844
(
2022
).
47.
P.
Mahzari
,
T. M.
Mitchell
,
A. P.
Jones
,
E. H.
Oelkers
,
A.
Striolo
,
F.
Iacoviello
et al, “
Novel laboratory investigation of huff-n-puff gas injection for shale oils under realistic reservoir conditions
,”
Fuel
284
,
118950
(
2021
).
48.
Z.-H.
Jia
,
R.-Y.
Cao
,
B.-Y.
Wang
,
L.-S.
Cheng
,
J.-C.
Zhou
,
B.-B.
Pu
et al, “
Effects of CH4/CO2 multi-component gas on components and properties of tight oil during CO2 utilization and storage: Physical experiment and composition numerical simulation
,”
Pet. Sci.
20
(
6
),
3478
3487
(
2023
).
49.
M.
Sbragaglia
,
R.
Benzi
,
L.
Biferale
,
S.
Succi
,
K.
Sugiyama
, and
F.
Toschi
, “
Generalized lattice Boltzmann method with multirange pseudopotential
,”
Phys. Rev. E
75
,
026702
(
2007
).
50.
J.
Zhang
and
D. Y.
Kwok
, “
Apparent slip over a solid-liquid interface with a no-slip boundary condition
,”
Phys. Rev. E
70
(
5
),
056701
(
2004
).
51.
R.
Benzi
,
L.
Biferale
,
M.
Sbragaglia
et al, “
Mesoscopic two-phase model for describing apparent slip in micro-channel flows
,”
Europhys. Lett.
74
(
4
),
651
(
2006
).
52.
W.
Wang
,
H.
Wang
,
Y.
Su
,
M.
Tang
, and
Q.
Zhang
, “
Simulation of liquid flow transport in nanoscale porous media using lattice Boltzmann method
,”
J. Taiwan Inst. Chem. Eng.
121
(
4
),
128
(
2021
).
53.
C.
Chang
,
C. H.
Liu
, and
C. A.
Lin
, “
Boundary conditions for lattice Boltzmann simulations with complex geometry flows
,”
Comput. Math. Appl.
58
(
5
),
940
949
(
2009
).
54.
X.
He
,
Q.
Zou
,
L. S.
Luo
et al, “
Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model
,”
J. Stat. Phys.
87
(
1
),
115
136
(
1997
).
55.
I.
Ginzbourg
and
P. M.
Adler
, “
Boundary flow condition analysis for the three-dimensional lattice Boltzmann model
,”
J. Phys. II
4
(
2
),
191
214
(
1994
).
56.
S.
Wang
,
F.
Javadpour
, and
Q.
Feng
, “
Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale
,”
Fuel
181
,
741
758
(
2016
).
57.
H.
Chen
,
M.
Yang
,
C.
Huang
,
Y.
Wang
,
Y.
Zhang
, and
M.
Zuo
, “
A dynamic model of CO2 diffusion coefficient in shale based on the whole process fitting
,”
Chem. Eng. J.
428
,
131151
(
2022
).
58.
J.
Bai
,
H.
Liu
,
J.
Wang
,
G.
Qian
,
Y.
Peng
,
Y.
Gao
et al, “
CO2, water and N2 injection for enhanced oil recovery with spatial arrangement of fractures in tight-oil reservoirs using huff-n-puff
,”
Energies
12
(
5
),
823
(
2019
).
59.
H.
Bai
,
Q.
Zhang
,
Z.
Li
,
B.
Li
,
D.
Zhu
,
L.
Zhang
et al, “
Effect of fracture on production characteristics and oil distribution during CO2 huff-n-puff under tight and low-permeability conditions
,”
Fuel
246
,
117
125
(
2019
).
60.
B.
Li
,
H.
Bai
,
A.
Li
,
L.
Zhang
, and
Q.
Zhang
, “
Experimental investigation on influencing factors of CO2 huff and puff under fractured low‐permeability conditions
,”
Energy Sci. Eng.
7
(
5
),
1621
1631
(
2019
).
61.
M.
Yang
,
S.
Huang
,
F.
Zhao
,
H.
Sun
, and
X.
Chen
, “
Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory
,”
Energy
294
,
130781
(
2024
).
You do not currently have access to this content.