To break the application scenario limitations of traditional bionic underwater robots and open up the way of information docking between underwater and water surface, a systematic study was conducted on the cross-medium standing-and-walking (SAW) behavior of dolphins under the collaborative movements of the body, caudal, and pectoral fins. A three-dimensional physical model of the biomimetic dolphin robot was established, a collaborative movement law of the body, caudal, and pectoral fins was proposed, and the SAW behavior under two modes, Homologous and Reverse modes, was realized. The mapping relationship between the robot's kinematic parameters and hydrodynamic performance parameters was analyzed, the respective advantages of the two vertical walking modes were compared, and the SAW mechanism of the two modes was revealed physically with the help of the evolution law of the flow field around the robot. The results show that the biomimetic dolphin robot can realize cross-medium SAW behavior through the collaborative movements of the body, caudal pectoral fins. It is worth noting that the Hom mode has a superior walking speed, which can reach up to 0.27 m/s, an increase in 83.3% compared to the Rev mode under the same conditions, while the Rev mode has better walking stability, with a minimum fluctuation rate of 2.59%, a 30.8% improvement compared to the Hom mode. This research provides a novel idea for enhancing the surface operation capability of traditional biomimetic underwater robots and provides an important fluid mechanics theoretical basis for the design of new generation of cross-medium dolphin robots.

1.
L.
Paull
,
S.
Saeedi
,
M.
Seto
, and
H.
Li
, “
AUV navigation and localization: A review
,”
IEEE J. Oceanic Eng.
39
(
1
),
131
149
(
2014
).
2.
R. B.
Wynn
,
V. A. I.
Huvenne
,
T. P.
Le Bas
,
B. J.
Murton
,
D. P.
Connelly
,
B. J.
Bett
,
H. A.
Ruhl
,
K. J.
Morris
,
J.
Peakall
,
D. R.
Parsons
,
E. J.
Sumner
,
S. E.
Darby
,
R. M.
Dorrell
, and
J. E.
Hunt
, “
Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience
,”
Mar. Geol.
352
,
451
468
(
2014
).
3.
X.
Wang
,
Y.
Wang
,
P.
Wang
,
S.
Yang
,
W.
Niu
, and
Y.
Yang
, “
Design, analysis, and testing of Petrel acoustic autonomous underwater vehicle for marine monitoring
,”
Phys. Fluids
34
(
3
),
037115
(
2022
).
4.
A.
Sahoo
,
S. K.
Dwivedy
, and
P. S.
Robi
, “
Advancements in the field of autonomous underwater vehicle
,”
Ocean Eng.
181
,
145
160
(
2019
).
5.
D. T.
Roper
,
S.
Sharma
,
R.
Sutton
, and
P.
Culverhouse
, “
A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles
,”
Proc. Inst. Mech. Eng., Part M
225
(
2
),
77
96
(
2011
).
6.
P. R.
Bandyopadhyay
, “
Trends in biorobotic autonomous undersea vehicles
,”
IEEE J. Oceanic Eng.
30
(
1
),
109
139
(
2005
).
7.
J.
Pan
,
Z.
Zhou
,
J.
Wang
,
P.
Zhang
, and
J.
Yu
, “
Development of a penguin-inspired swimming robot with air lubrication system
,”
IEEE Trans. Ind. Electron.
70
(
3
),
2780
2789
(
2023
).
8.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
D. K. P.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
(
1
),
33
53
(
2000
).
9.
F. E.
Fish
, “
The myth and reality of Gray's paradox: Implication of dolphin drag reduction for technology
,”
Bioinspiration Biomimetics
1
(
2
),
R17
R25
(
2006
).
10.
F. E.
Fish
and
C. A.
Hui
, “
Dolphin swimming—A review
,”
Mammal Rev.
21
(
4
),
181
195
(
1991
).
11.
J. W. M.
Bush
and
D. L.
Hu
, “
WALKING ON WATER: Biolocomotion at the interface
,”
Annu. Rev. Fluid Mech.
38
(
1
),
339
369
(
2006
).
12.
D.
Au
and
D.
Weihs
, “
At high speeds dolphins save energy by leaping
,”
Nature
284
(
5756
),
548
550
(
1980
).
13.
M.
Sfakiotakis
,
D. M.
Lane
, and
J. B. C.
Davies
, “
Review of fish swimming modes for aquatic locomotion
,”
IEEE J. Oceanic Eng.
24
(
2
),
237
252
(
1999
).
14.
R. W.
Blake
, “
Fish functional design and swimming performance
,”
J. Fish Biol.
65
(
5
),
1193
1222
(
2004
).
15.
J.
Shintake
,
V.
Cacucciolo
,
H.
Shea
, and
D.
Floreano
, “
Soft biomimetic fish robot made of dielectric elastomer actuators
,”
Soft Rob.
5
(
4
),
466
474
(
2018
).
16.
J.
Zhu
,
C.
White
,
D. K.
Wainwright
,
V.
Di Santo
,
G. V.
Lauder
, and
H.
Bart-Smith
, “
Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes
,”
Sci. Rob.
4
(
34
),
eaax4615
(
2019
).
17.
J.
Yu
,
Z.
Su
,
Z.
Wu
, and
M.
Tan
, “
Development of a fast-swimming dolphin robot capable of leaping
,”
IEEE/ASME Trans. Mechatron.
21
(
5
),
2307
2316
(
2016
).
18.
D.
Chen
,
Z.
Wu
,
P.
Zhang
,
M.
Tan
, and
J.
Yu
, “
Performance improvement of a high-speed swimming robot for fish-like leaping
,”
IEEE Rob. Autom. Lett.
7
(
2
),
1936
1943
(
2022
).
19.
Z.
Wu
,
J.
Yu
,
J.
Yuan
, and
M.
Tan
, “
Towards a gliding robotic dolphin: Design, modeling, and experiments
,”
IEEE/ASME Trans. Mechatron.
24
(
1
),
260
270
(
2019
).
20.
J.
Wang
,
Z.
Wu
,
Y.
Zhang
,
S.
Kong
,
M.
Tan
, and
J.
Yu
, “
Integrated tracking control of an underwater bionic robot based on multimodal motions
,”
IEEE Trans. Syst., Man, Cybern.
54
(
3
),
1599
1610
(
2024
).
21.
T. J. K.
Ng
,
N.
Chen
, and
F.
Zhang
, “
Snapp: An agile robotic fish with 3-D maneuverability for open water swim
,”
IEEE Rob. Autom. Lett.
8
(
10
),
6499
6506
(
2023
).
22.
Z.
Yu
,
K.
Li
,
Y.
Ji
, and
S. X.
Yang
, “
Fast motion performance of a bionic ray robot with serial pectoral fins
,”
IEEE Rob. Autom. Lett.
8
(
11
),
7218
7225
(
2023
).
23.
Y.
Hao
,
Y.
Cao
,
Y.
Cao
,
X.
Mo
,
Q.
Huang
,
L.
Gong
,
G.
Pan
, and
Y.
Cao
, “
Bioinspired Closed-loop CPG-based Control of a robotic manta for autonomous swimming
,”
J. Bionic Eng.
21
(
1
),
177
191
(
2023
).
24.
C. A.
Taylor
,
T. A.
Fonte
, and
J. K.
Min
, “
Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve
,”
J. Am. Coll. Cardiol.
61
(
22
),
2233
2241
(
2013
).
25.
B.
Blocken
, “
Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations
,”
Build. Environ.
91
,
219
245
(
2015
).
26.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
(
4
),
943
945
(
1999
).
27.
D.
Ren
,
W.
Fan
, and
R.
Zhang
, “
Experimental and numerical study on flow mixing and combustion characteristics of a novel multibypass integrated combustor
,”
Phys. Fluids
36
(
4
),
047114
(
2024
).
28.
Z.
Li
,
Q.
Gai
,
H.
Yan
,
M.
Lei
,
Z.
Zhou
, and
D.
Xia
, “
The effect of the four-tentacled collaboration on the self-propelled performance of squid robot
,”
Phys. Fluids
36
(
4
),
041909
(
2024
).
29.
D. S.
Barrett
,
M. S.
Triantafyllou
,
D. K. P.
Yue
,
M. A.
Grosenbaugh
, and
M. J.
Wolfgang
, “
Drag reduction in fish-like locomotion
,”
J. Fluid Mech.
392
,
183
212
(
1999
).
30.
I.
Borazjani
and
F.
Sotiropoulos
, “
Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes
,”
J. Exp. Biol.
211
(
10
),
1541
1558
(
2008
).
31.
S. C.
Ting
and
J. T.
Yang
, “
Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition
,”
Phys. Fluids
21
(
4
),
041901
(
2009
).
32.
I.
Borazjani
, “
Simulations of unsteady aquatic locomotion: From unsteadiness in straight-line swimming to fast-starts
,”
Integr. Comp. Biol.
55
(
4
),
740
752
(
2015
).
33.
J.
Song
,
Y.
Li
,
Y.
Xiao
,
C.
Wang
,
Y.
Zhong
, and
L.
Yin
, “
Delayed action leads to faster turning of fish by interaction with neighbor
,”
Phys. Fluids
36
(
2
),
021901
(
2024
).
34.
Y. K.
Feng
,
H. X.
Liu
,
Y. Y.
Su
, and
Y. M.
Su
, “
Numerical study on the hydrodynamics of C-turn maneuvering of a tuna-like fish body under self-propulsion
,”
J. Fluids Struct.
94
,
102954
(
2020
).
35.
D.
Xia
,
Q.
Yin
,
Z.
Li
,
W.
Chen
,
Y.
Shi
, and
J.
Dou
, “
Numerical study on the hydrodynamics of porpoising behavior in dolphins
,”
Ocean Eng.
229
,
108985
(
2021
).
36.
M.
Lei
,
Z.
Li
,
H.
Yan
,
J.
Cao
, and
D.
Xia
, “
A comparative study of three modes for realizing transmedia standing-and-hovering behavior in robotic dolphins
,”
Phys. Fluids
36
(
2
),
021902
(
2024
).
37.
J.
Deng
,
L.
Zhang
,
Z.
Liu
, and
X.
Mao
, “
Numerical prediction of aerodynamic performance for a flying fish during gliding flight
,”
Bioinspiration Biomimetics
14
(
4
),
046009
(
2019
).
38.
Q.
Zhu
,
M. J.
Wolfgang
,
D. K. P.
Yue
, and
M. S.
Triantafyllou
, “
Three-dimensional flow structures and vorticity control in fish-like swimming
,”
J. Fluid Mech.
468
,
1
28
(
2002
).
39.
Q.
Mao
,
J.
Zhao
,
Y.
Liu
, and
H. J.
Sung
, “
Hydrodynamic benefits of pectoral fins in a self-propelled flexible plate
,”
Phys. Fluids
34
(
2
),
021909
(
2022
).
40.
Y.
Pan
and
H.
Dong
, “
Computational analysis of hydrodynamic interactions in a high-density fish school
,”
Phys. Fluids
32
(
12
),
121901
(
2020
).
41.
J.
Kelly
and
A.
Menzer
, “
Hydrodynamics of body–body interactions in dense synchronous elongated fish schools
,”
Phys. Fluids
35
(
4
),
041906
(
2023
).
42.
S.
Heydari
and
E.
Kanso
, “
School cohesion, speed and efficiency are modulated by the swimmers flapping motion
,”
J. Fluid Mech.
922
,
A27
(
2021
).
43.
P. N.
Sun
,
A.
Colagrossi
,
S.
Marrone
,
M.
Antuono
, and
A. M.
Zhang
, “
Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows
,”
Comput. Phys. Commun.
224
,
63
80
(
2018
).
44.
W. M.
Van Rees
,
M.
Gazzola
, and
P.
Koumoutsakos
, “
Optimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers
,”
J. Fluid Mech.
775
,
178
188
(
2015
).
45.
Z.
Lin
,
D.
Liang
,
A. P. S.
Bhalla
,
A. A.
Sheikh Al-Shabab
,
M.
Skote
,
W.
Zheng
, and
Y.
Zhang
, “
How wavelength affects hydrodynamic performance of two accelerating mirror-symmetric undulating hydrofoils
,”
Phys. Fluids
35
(
8
),
081901
(
2023
).
46.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
47.
S.
Göktepe
,
K.
Atalık
, and
H.
Ertürk
, “
Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube
,”
Int. J. Therm. Sci.
80
,
83
92
(
2014
).
48.
Z. Y.
Zhou
,
S. B.
Kuang
,
K. W.
Chu
, and
A. B.
Yu
, “
Discrete particle simulation of particle–fluid flow: Model formulations and their applicability
,”
J. Fluid Mech.
661
,
482
510
(
2010
).
You do not currently have access to this content.