Thrombosis commonly develops in the left atrial appendage of patients with atrial fibrillation. The formation of blood clots in atrial appendage is a complex process, which depends on the shape of the appendage, the velocity of blood flow, the concentrations of red blood cells, platelets, and coagulation, among other factors. In this work, we present a new methodology to identify the key factors contributing to clot formation in the left atrial appendage during atrial fibrillation. The new methodology combines computed tomography imaging, computational fluid dynamics, mesh processing, and multiphase thrombosis modeling. We begin by running simulations to investigate flow patterns inside the left atrial appendages with realistic geometries. Our simulations suggest that at the entrance of the left atrial appendage, the flow forms vortices, which can intrude inside the appendage depending on the phases of the cardiac cycle. Next, we introduce blood coagulation and consider different scenarios corresponding to physiological values of blood flow velocity, geometry of the left atrial appendage, and hematocrit values. Numerical results suggest that the chances of clot formation are higher in the “cactus” geometry than in the “chicken-wing” one, in agreement with the literature. Furthermore, they suggest that slower flow circulation facilitates the development of a clot in the depth of the left atrial appendage. Slower blood movement also favors the procoagulant activity of platelets, while faster flow circulation enhances the procoagulant effect from erythrocytes. Finally, our simulations show that increased hematocrit upregulates the generation of fibrin polymer, regardless of flow velocity.

1.
F. C.
Roessler
,
N.
Kalms
,
F.
Jann
,
A.
Kemmling
,
J.
Ribbat-Idel
,
F.
Stellmacher
,
I. R.
König
,
M.
Ohlrich
, and
G.
Royl
, “
First approach to distinguish between cardiac and arteriosclerotic emboli of individual stroke patients applying the histological THROMBEX-classification rule
,”
Sci. Rep.
11
,
8433
(
2021
).
2.
T.
Boeckh-Behrens
,
J. F.
Kleine
,
C.
Zimmer
,
F.
Neff
,
F.
Scheipl
,
J.
Pelisek
,
L.
Schirmer
,
K.
Nguyen
,
D.
Karatas
, and
H.
Poppert
, “
Thrombus histology suggests cardioembolic cause in cryptogenic stroke
,”
Stroke
47
,
1864
1871
(
2016
).
3.
J.
Romero
,
J. J.
Cao
,
M. J.
Garcia
, and
C. C.
Taub
, “
Cardiac imaging for assessment of left atrial appendage stasis and thrombosis
,”
Nat. Rev. Cardiol.
11
,
470
480
(
2014
).
4.
N. M.
Al-Saady
,
O. A.
Obel
, and
A. J.
Camm
, “
Left atrial appendage: Structure, function, and role in thromboembolism
,”
Heart
82
,
547
554
(
1999
).
5.
A.
Cresti
,
M. A.
García-Fernández
,
H.
Sievert
,
P.
Mazzone
,
P.
Baratta
,
M.
Solari
,
A.
Geyer
,
F.
De Sensi
, and
U.
Limbruno
, “
Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: A large transoesophageal echo study
,”
EuroIntervention
15
,
e225
e230
(
2019
).
6.
M.
Roy
,
A. K.
Roy
,
J. R.
DeSanto
, and
M.
Abdelsalam
, “
Free floating thrombus in carotid artery in a patient with recurrent strokes
,”
Case Rep. Med.
2017
,
1
4
.
7.
O. D.
Backer
,
S.
Arnous
,
N.
Ihlemann
,
N.
Vejlstrup
,
E.
Jørgensen
,
S.
Pehrson
,
T. D. W.
Krieger
,
P.
Meier
,
L.
Søndergaard
, and
O. W.
Franzen
, “
Percutaneous left atrial appendage occlusion for stroke prevention in atrial fibrillation: An update
,”
Open Heart
1
,
e000020
(
2014
).
8.
F. K.
Wegner
,
R.
Radke
,
C.
Ellermann
,
J.
Wolfes
,
A. J.
Fischer
,
H.
Baumgartner
,
L.
Eckardt
,
G.-P.
Diller
, and
S.
Orwat
, “
Incidence and predictors of left atrial appendage thrombus on transesophageal echocardiography before elective cardioversion
,”
Sci. Rep.
12
,
3671
(
2022
).
9.
M.
Markl
,
D. C.
Lee
,
N.
Furiasse
,
M.
Carr
,
C.
Foucar
,
J.
Ng
,
J.
Carr
, and
J. J.
Goldberger
, “
Left atrial and left atrial appendage 4d blood flow dynamics in atrial fibrillation
,”
Circ. Cardiovasc. Imaging
9
,
e004984
(
2016
).
10.
A.
Gonzalo
,
M.
García-Villalba
,
L.
Rossini
,
E.
Durán
,
D.
Vigneault
,
P.
Martínez-Legazpi
,
O.
Flores
,
J.
Bermejo
,
E.
McVeigh
,
A. M.
Kahn
et al, “
Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations
,”
Numer. Methods Biomed. Eng.
38
,
e3597
(
2022
).
11.
A.
Qureshi
,
M.
Balmus
,
D.
Nechipurenko
,
F.
Ataullakhanov
,
S.
Williams
,
G.
Lip
,
D.
Nordsletten
,
O.
Aslanidi
, and
A.
de Vecchi
, “
Left atrial appendage morphology impacts thrombus formation risks in multi-physics atrial models
,” in
2021 Computing in Cardiology (CinC)
(
IEEE
,
2021
).
12.
A.
Qureshi
,
G. Y.
Lip
,
D. A.
Nordsletten
,
S. E.
Williams
,
O.
Aslanidi
, and
A.
De Vecchi
, “
Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke
,”
Front. Cardiovasc. Med.
9
,
1074562
(
2023
).
13.
G. M.
Bosi
,
A.
Cook
,
R.
Rai
,
L. J.
Menezes
,
S.
Schievano
,
R.
Torii
, and
G.
Burriesci
, “
Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk
,”
Front. Cardiovasc. Med.
5
,
34
(
2018
).
14.
X.
Morales
,
J.
Mill
,
K. A.
Juhl
,
A.
Olivares
,
G.
Jimenez-Perez
,
R. R.
Paulsen
, and
O.
Camara
, “
Deep learning surrogate of computational fluid dynamics for thrombus formation risk in the left atrial appendage
,” in
Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges
(
Springer International Publishing
,
2020
), pp.
157
166
.
15.
G. Y.
Lip
, “
Intracardiac thrombus formation in cardiac impairment: The role of anticoagulant therapy
,”
Postgrad. Med. J.
72
,
731
738
(
1996
).
16.
A.
Fleddermann
,
R.
Eckert
,
P.
Muskala
,
C.
Hayes
,
A.
Magalski
, and
M. L.
Main
, “
Efficacy of direct acting oral anticoagulant drugs in treatment of left atrial appendage thrombus in patients with atrial fibrillation
,”
Am. J. Cardiol.
123
,
57
62
(
2019
).
17.
E.
Caliskan
,
J. L.
Cox
,
D. R.
Holmes
,
B.
Meier
,
D. R.
Lakkireddy
,
V.
Falk
,
S. P.
Salzberg
, and
M. Y.
Emmert
, “
Interventional and surgical occlusion of the left atrial appendage
,”
Nat. Rev. Cardiol.
14
,
727
743
(
2017
).
18.
P.
Cepas-Guillén
,
E.
Flores-Umanzor
,
N.
Leduc
,
V.
Bajoras
,
N.
Perrin
,
J.
Farjat-Pasos
,
A.
McInerney
,
A.
Lafond
,
X.
Millán
,
S.
Zendjebil
et al, “
Impact of device implant depth after left atrial appendage occlusion
,”
Cardiovasc. Interv.
16
,
2139
2149
(
2023
).
19.
A.
Akinapelli
,
O.
Bansal
,
J. P.
Chen
,
A.
Pflugfelder
,
N.
Gordon
,
K.
Stein
,
B.
Huibregtse
, and
D.
Hou
, “
Left atrial appendage closure—The WATCHMAN device
,”
Curr. Cardiol. Rev.
11
,
334
340
(
2015
).
20.
D. N.
Majule
,
C.
Jing
,
W. M.
Rutahoile
, and
F. S.
Shonyela
, “
The efficacy and safety of the WATCHMAN device in LAA occlusion in patients with non-valvular atrial fibrillation contraindicated to oral anticoagulation: A focused review
,”
Ann. Thorac. Cardiovasc. Surg.
24
,
271
278
(
2018
).
21.
A.
Sedaghat
,
V.
Vij
,
B.
Al-Kassou
,
S.
Gloekler
,
R.
Galea
,
M.
Fürholz
,
B.
Meier
,
M.
Valgimigli
,
G.
O'Hara
,
D.
Arzamendi
,
V.
Agudelo
,
L.
Asmarats
,
X.
Freixa
,
E.
Flores-Umanzor
,
O. D.
Backer
,
L.
Søndergaard
,
L.
Nombela-Franco
,
A.
McInerney
,
K.
Korsholm
,
J. E.
Nielsen-Kudsk
,
S.
Afzal
,
T.
Zeus
,
F.
Operhalski
,
B.
Schmidt
,
G.
Montalescot
,
P.
Guedeney
,
X.
Iriart
,
N.
Miton
,
J.
Saw
,
T.
Gilhofer
,
L.
Fauchier
,
E.
Veliqi
,
F.
Meincke
,
N.
Petri
,
P.
Nordbeck
,
S.
Rycerz
,
D.
Ognerubov
,
E.
Merkulov
,
I.
Cruz-González
,
R.
Gonzalez-Ferreiro
,
D. L.
Bhatt
,
A.
Laricchia
,
A.
Mangieri
,
H.
Omran
,
J. W.
Schrickel
,
J.
Rodes-Cabau
, and
G.
Nickenig
, “
Device-related thrombus after left atrial appendage closure: Data on thrombus characteristics, treatment strategies, and clinical outcomes from the EUROC-DRT-registry
,”
Circ. Cardiovasc. Interv.
14
,
e010195
(
2021
).
22.
P. B.
Bertrand
,
M.
Habran
,
K.
Kenis
,
J.
Lecomte
,
L.
Moonen
,
D.
Stroobants
, and
E.
Benit
, “
Dual antiplatelet therapy after percutaneous left atrial appendage occlusion: Single center experience with the Amplatzer Cardiac Plug
,”
Acta Cardiol.
74
,
74
81
(
2018
).
23.
J.
Saw
,
J. E.
Nielsen-Kudsk
,
M.
Bergmann
,
M. J.
Daniels
,
A.
Tzikas
,
M.
Reisman
, and
B. S.
Rana
, “
Antithrombotic therapy and device-related thrombosis following endovascular left atrial appendage closure
,”
JACC Cardiovascular Interventions
12
,
1067
1076
(
2019
).
24.
X.
Iriart
,
G.
Blanc
,
X. P.
Bouteiller
,
B.
Legghe
,
B.
Bouyer
,
S.
Sridi-Cheniti
,
A.
Bustin
,
C.
Vasile
,
J.-B.
Thambo
,
M.
Elbaz
et al, “
Clinical implications of CT-detected hypoattenuation thickening on left atrial appendage occlusion devices
,”
Radiology
308
,
e230462
(
2023
).
25.
T.
Saito
,
K.
Tamura
,
D.
Uchida
,
T.
Saito
,
T.
Nitta
, and
Y.
Sugisaki
, “
Histopathological evaluation of left atrial appendage thrombogenesis removed during surgery for atrial fibrillation
,”
Am. Heart J.
153
,
704
711
(
2007
).
26.
K.
Dudzińska-Szczerba
,
P.
Kułakowski
,
I.
Michałowska
, and
J.
Baran
, “
Association between left atrial appendage morphology and function and the risk of ischaemic stroke in patients with atrial fibrillation
,”
Arrhythm. Electrophysiol. Rev.
11
,
e09
(
2022
).
27.
B.
Kreidieh
and
M.
Valderrábano
, “
Malignant left atrial appendage morphology and embolization risk in atrial fibrillation
,”
HeartRhythm Case Rep.
1
,
406
410
(
2015
).
28.
A.
Masci
,
L.
Barone
,
L.
Dedè
,
M.
Fedele
,
C.
Tomasi
,
A.
Quarteroni
, and
C.
Corsi
, “
The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: A computational fluid dynamics study
,”
Front. Physiol.
9
,
1938
(
2019
).
29.
R. M.
Heppell
,
K. E.
Berkin
,
J. M.
McLenachan
, and
J. A.
Davies
, “
Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in non-rheumatic atrial fibrillation
,”
Heart
77
,
407
411
(
1997
).
30.
R. J.
Zotz
,
M.
Müller
,
S.
Genth-Zotz
, and
H.
Darius
, “
Spontaneous echo contrast caused by platelet and leukocyte aggregates?
Stroke
32
,
1127
1133
(
2001
).
31.
T.
Ito
and
M.
Suwa
, “
Left atrial spontaneous echo contrast: Relationship with clinical and echocardiographic parameters
,”
Echo Res. Pract.
6
,
R65
R73
(
2019
).
32.
B.
Wang
,
Z.
Wang
,
G.
Fu
,
B.
He
,
H.
Wang
,
W.
Zhuo
,
S.
Zhang
, and
H.
Chu
, “
Left atrial spontaneous echo contrast and ischemic stroke in patients undergoing percutaneous left atrial appendage closure
,”
Front. Cardiovasc. Med.
8
,
723280
(
2021
).
33.
Y.
Zhao
,
L.
Ji
,
J.
Liu
,
J.
Wu
,
Y.
Wang
,
S.
Shen
,
S.
Guo
,
R.
Jian
,
G.
Chen
,
X.
Wei
,
W.
Liao
,
S.
Kutty
,
Y.
Liao
, and
J.
Bin
, “
Intensity of left atrial spontaneous echo contrast as a correlate for stroke risk stratification in patients with nonvalvular atrial fibrillation
,”
Sci. Rep.
6
,
27650
(
2016
).
34.
G. S.
Reeder
,
J. E.
Charlesworth
, and
S. B.
Moore
, “
Cause of spontaneous echocardiographic contrast as assessed by scanning electron microscopy
,”
J. Am. Soc. Echocardiogr.
7
,
169
173
(
1994
).
35.
T.
Watson
,
E.
Shantsila
, and
G. Y.
Lip
, “
Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited
,”
Lancet
373
,
155
166
(
2009
).
36.
C. E.
Hansen
,
Y.
Qiu
,
O. J.
McCarty
, and
W. A.
Lam
, “
Platelet mechanotransduction
,”
Annu. Rev. Biomed. Eng.
20
,
253
275
(
2018
).
37.
T. J.
Stalker
,
E. A.
Traxler
,
J.
Wu
,
K. M.
Wannemacher
,
S. L.
Cermignano
,
R.
Voronov
,
S. L.
Diamond
, and
L. F.
Brass
, “
Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network
,”
Blood
121
,
1875
1885
(
2013
).
38.
B.
Furie
and
B. C.
Furie
, “
Thrombus formation in vivo
,”
J. Clin. Invest.
115
,
3355
3362
(
2005
).
39.
M. A.
Panteleev
,
A. N.
Balandina
,
E. N.
Lipets
,
M. V.
Ovanesov
, and
F. I.
Ataullakhanov
, “
Task-oriented modular decomposition of biological networks: Trigger mechanism in blood coagulation
,”
Biophys. J.
98
,
1751
1761
(
2010
).
40.
N. A.
Podoplelova
,
A. N.
Sveshnikova
,
Y. N.
Kotova
,
A.
Eckly
,
N.
Receveur
,
D. Y.
Nechipurenko
,
S. I.
Obydennyi
,
I. I.
Kireev
,
C.
Gachet
,
F. I.
Ataullakhanov
,
P. H.
Mangin
, and
M. A.
Panteleev
, “
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting
,”
Blood
128
,
1745
1755
(
2016
).
41.
F.
Swieringa
,
H. M.
Spronk
,
J. W.
Heemskerk
, and
P. E.
van der Meijden
, “
Integrating platelet and coagulation activation in fibrin clot formation
,”
Res. Pract. Thromb. Haemost.
2
,
450
460
(
2018
).
42.
K.
Leiderman
and
A. L.
Fogelson
, “
Grow with the flow: A spatial–temporal model of platelet deposition and blood coagulation under flow
,”
Math. Med. Biol.
28
,
47
84
(
2011
).
43.
A. L.
Fogelson
and
K. B.
Neeves
, “
Fluid mechanics of blood clot formation
,”
Annu. Rev. Fluid Mech.
47
,
377
403
(
2015
).
44.
A. M.
Shibeko
,
E. S.
Lobanova
,
M. A.
Panteleev
, and
F. I.
Ataullakhanov
, “
Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa
,”
BMC Syst. Biol.
4
,
5
(
2010
).
45.
A.
Bouchnita
,
T.
Galochkina
,
P.
Kurbatova
,
P.
Nony
, and
V.
Volpert
, “
Conditions of microvessel occlusion for blood coagulation in flow
,”
Numer. Methods Biomed. Eng.
33
,
e2850
(
2017
).
46.
A. V.
Belyaev
,
M. A.
Panteleev
, and
F. I.
Ataullakhanov
, “
Threshold of microvascular occlusion: Injury size defines the thrombosis scenario
,”
Biophys. J.
109
,
450
456
(
2015
).
47.
S. P.
Jackson
,
W. S.
Nesbitt
, and
E.
Westein
, “
Dynamics of platelet thrombus formation
,”
J. Thromb. Haemost.
7
,
17
20
(
2009
).
48.
S. P.
Jackson
, “
Arterial thrombosis—Insidious, unpredictable and deadly
,”
Nat. Med.
17
,
1423
1436
(
2011
).
49.
L. F.
Brass
and
S. L.
Diamond
, “
Transport physics and biorheology in the setting of hemostasis and thrombosis
,”
J. Thromb. Haemost.
14
,
906
917
(
2016
).
50.
J.
Stone
,
P.
Hangge
,
H.
Albadawi
,
A.
Wallace
,
F.
Shamoun
,
M. G.
Knuttien
,
S.
Naidu
, and
R.
Oklu
, “
Deep vein thrombosis: Pathogenesis, diagnosis, and medical management
,”
Cardiovasc. Diagn. Ther.
7
,
S276
(
2017
).
51.
M.
Lehmann
,
R. M.
Schoeman
,
P. J.
Krohl
,
A. M.
Wallbank
,
J. R.
Samaniuk
,
M.
Jandrot-Perrus
, and
K. B.
Neeves
, “
Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-dependent manner in an in vitro venous thrombosis model
,”
Arterioscler. Thromb. Vasc. Biol.
38
,
1052
1062
(
2018
).
52.
A.
Bouchnita
,
A. V.
Belyaev
, and
V.
Volpert
, “
Multiphase continuum modeling of thrombosis in aneurysms and recirculation zones
,”
Phys. Fluids
33
,
093314
(
2021
).
53.
M. O.
Bernabeu
,
Y.
Lu
,
O.
Abu-Qamar
,
L. P.
Aiello
, and
J. K.
Sun
, “
Estimation of diabetic retinal microaneurysm perfusion parameters based on computational fluid dynamics modeling of adaptive optics scanning laser ophthalmoscopy
,”
Front. Physiol.
9
,
989
(
2018
).
54.
M.
Sato
and
N.
Ohshima
, “
Effect of wall shear rate on thrombogenesis in microvessels of the rat mesentery
,”
Microvasc. Res.
66
,
941
949
(
1990
).
55.
J.
Zilberman-Rudenko
,
J. L.
Sylman
,
H. H. S.
Lakshmanan
,
O. J. T.
McCarty
, and
J.
Maddala
, “
Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network
,”
Cell. Mol. Bioeng.
10
,
16
29
(
2017
).
56.
W.-T.
Wu
,
N.
Aubry
,
M.
Massoudi
, and
J. F.
Antaki
, “
Transport of platelets induced by red blood cells based on mixture theory
,”
Int. J. Eng. Sci.
118
,
16
27
(
2017
).
57.
L.
Mountrakis
,
E.
Lorenz
,
O.
Malaspinas
,
S.
Alowayyed
,
B.
Chopard
, and
A. G.
Hoekstra
, “
Parallel performance of an IB-LBM suspension simulation framework
,”
J. Comput. Sci.
9
,
45
50
(
2015
).
58.
A. M.
Robertson
,
A.
Sequeira
, and
R. G.
Owens
, “
Rheological models for blood
,” in
Cardiovascular Mathematics
(
Springer
,
2009
), pp.
211
241
.
59.
A.
Celi
,
G.
Merrill-Skoloff
,
P.
Gross
,
S.
Falati
,
D. S.
Sim
,
R.
Flaumenhaft
,
B.
Furie
, and
B.
Furie
, “
Thrombus formation: Direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscope
,”
J. Thromb. Haemost.
1
,
60
68
(
2002
).
60.
J. W.
Weisel
and
R. I.
Litvinov
, “
Red blood cells: The forgotten player in hemostasis and thrombosis
,”
J. Thromb. Haemost.
17
,
271
282
(
2019
).
61.
J. R.
Byrnes
and
A. S.
Wolberg
, “
Red blood cells in thrombosis
,”
Blood
130
,
1795
1799
(
2017
).
62.
R. I.
Litvinov
and
J. W.
Weisel
, “
Role of red blood cells in haemostasis and thrombosis
,”
ISBT Sci. Ser.
12
,
176
183
(
2017
).
63.
C.
Klatt
,
I.
Krüger
,
S.
Zey
,
K.-J.
Krott
,
M.
Spelleken
,
N. S.
Gowert
,
A.
Oberhuber
,
L.
Pfaff
,
W.
Luckstadt
,
K.
Jurk
,
M.
Schaller
,
H.
Al-Hasani
,
J.
Schrader
,
S.
Massberg
,
K.
Stark
,
H.
Schelzig
,
M.
Kelm
, and
M.
Elvers
, “
Platelet-RBC interaction mediated by FASL/FASR induces procoagulant activity important for thrombosis
,”
J. Clin. Invest.
128
,
3906
(
2018
).
64.
E.
Kenne
,
K. F.
Nickel
,
A. T.
Long
,
T. A.
Fuchs
,
E. X.
Stavrou
,
F. R.
Stahl
, and
T.
Renné
, “
Factor XII: A novel target for safe prevention of thrombosis and inflammation
,”
J. Intern. Med.
278
,
571
585
(
2015
).
65.
J. W.
Yau
,
H.
Teoh
, and
S.
Verma
, “
Endothelial cell control of thrombosis
,”
BMC Cardiovasc. Disord.
15
,
130
(
2015
).
66.
V. W. M.
van Hinsbergh
, “
Endothelium—Role in regulation of coagulation and inflammation
,”
Semin. Immunopathol.
34
,
93
106
(
2011
).
67.
K.
Urschel
,
M.
Tauchi
,
S.
Achenbach
, and
B.
Dietel
, “
Investigation of wall shear stress in cardiovascular research and in clinical practice—From bench to bedside
,”
Int. J. Mol. Sci.
22
,
5635
(
2021
).
68.
A. M.
Malek
, “
Hemodynamic shear stress and its role in atherosclerosis
,”
JAMA
282
,
2035
(
1999
).
69.
A.
Bouchnita
,
K.
Terekhov
,
P.
Nony
,
Y.
Vassilevski
, and
V.
Volpert
, “
A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions
,”
PLoS One
15
,
e0235392
(
2020
).
70.
A.
Bouchnita
and
V.
Volpert
, “
A multiscale model of platelet-fibrin thrombus growth in the flow
,”
Comput. Fluids
184
,
10
20
(
2019
).
71.
A.
Bouchnita
and
V.
Volpert
, “
Intraplatelet calcium signaling regulates thrombus growth under flow: Insights from a multiscale model
,”
Computation
12
,
99
(
2024
).
72.
A.
Belyaev
,
J.
Dunster
,
J.
Gibbins
,
M.
Panteleev
, and
V.
Volpert
, “
Modelling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones
,”
Phys. Life Rev.
26–27
,
57
95
(
2018
).
73.
B. M.
Fanni
,
K.
Capellini
,
M. D.
Leonardo
,
A.
Clemente
,
E.
Cerone
,
S.
Berti
, and
S.
Celi
, “
Correlation between LAA morphological features and computational fluid dynamics analysis for non-valvular atrial fibrillation patients
,”
Appl. Sci.
10
,
1448
(
2020
).
74.
G.
Musotto
,
A.
Monteleone
,
D.
Vella
,
S. D.
Leonardo
,
A.
Viola
,
G.
Pitarresi
,
B.
Zuccarello
,
A.
Pantano
,
A.
Cook
,
G. M.
Bosi
, and
G.
Burriesci
, “
The role of patient-specific morphological features of the left atrial appendage on the thromboembolic risk under atrial fibrillation
,”
Front. Cardiovasc. Med.
9
,
894187
(
2022
).
75.
M.
García-Villalba
,
L.
Rossini
,
A.
Gonzalo
,
D.
Vigneault
,
P.
Martinez-Legazpi
,
E.
Durán
,
O.
Flores
,
J.
Bermejo
,
E.
McVeigh
,
A. M.
Kahn
, and
J. C.
del Álamo
, “
Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk
,”
Front. Physiol.
12
,
596596
(
2021
).
76.
J.
Mill
,
V.
Agudelo
,
A. L.
Olivares
,
M. I.
Pons
,
E.
Silva
,
M.
Nuñez-Garcia
,
X.
Morales
,
D.
Arzamendi
,
X.
Freixa
,
J.
Noailly
et al, “
Sensitivity analysis of in silico fluid simulations to predict thrombus formation after left atrial appendage occlusion
,”
Mathematics
9
,
2304
(
2021
).
77.
D.
Ram
,
D.
Bhandari
,
D.
Tripathi
, and
K.
Sharma
, “
Motion of bacteria and caox particles via urine flow modulated by the electro-osmosis
,”
Phys. Fluids
35
,
121910
(
2023
).
78.
D.
Ram
,
D. S.
Bhandari
,
K.
Sharma
, and
D.
Tripathi
, “
Progression of blood-borne viruses through bloodstream: A comparative mathematical study
,”
Comput. Methods Programs Biomed.
232
,
107425
(
2023
).
79.
D.
Ram
,
D.
Bhandari
,
D.
Tripathi
, and
K.
Sharma
, “
Propagation of H1N1 virus through saliva movement in oesophagus: A mathematical model
,”
Eur. Phys. J. Plus
137
,
866
(
2022
).
80.
COMSOL Inc.
, See http://www.comsol.com for more information about COMSOL multiphysics.
81.
H.
Jasak
,
A.
Jemcov
,
Z.
Tukovic
et al, “
Openfoam: A c++ library for complex physics simulations
,” in
International Workshop on Coupled Methods in Numerical Dynamics
(
IUC Dubrovnik Croatia
,
2007
), Vol.
1000
, pp.
1
20
.
82.
A.
Bouchnita
,
A.
Tosenberger
, and
V.
Volpert
, “
On the regimes of blood coagulation
,”
Appl. Math. Lett.
51
,
74
79
(
2016
).
83.
A.
Bouchnita
,
T.
Galochkina
, and
V.
Volpert
, “
Influence of antithrombin on the regimes of blood coagulation: Insights from the mathematical model
,”
Acta Biotheor.
64
,
327
342
(
2016
).
84.
W.-T.
Wu
,
Y.
Li
,
N.
Aubry
,
M.
Massoudi
, and
J. F.
Antaki
, “
Numerical simulation of red blood cell-induced platelet transport in saccular aneurysms
,”
Appl. Sci.
7
,
484
(
2017
).
85.
W.-T.
Wu
,
N.
Aubry
,
J. F.
Antaki
, and
M.
Massoudi
, “
Simulation of blood flow in a sudden expansion channel and a coronary artery
,”
J. Comput. Appl. Math.
376
,
112856
(
2020
).
86.
See https://www.solidworks.com for information about SOLIDWORKS software.
87.
G.
García-Isla
,
A. L.
Olivares
,
E.
Silva
,
M.
Nuñez-Garcia
,
C.
Butakoff
,
D.
Sanchez-Quintana
,
H. G.
Morales
,
X.
Freixa
,
J.
Noailly
,
T.
De Potter
et al, “
Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage
,”
Numer. Methods Biomed. Eng.
34
,
e3100
(
2018
).
88.
P.
Cignoni
,
M.
Callieri
,
M.
Corsini
,
M.
Dellepiane
,
F.
Ganovelli
, and
G.
Ranzuglia
, “
Meshlab: An open-source mesh processing tool
,” in
Eurographics Italian Chapter Conference
, edited by
V.
Scarano
,
R. D.
Chiara
, and
U.
Erra
(
The Eurographics Association
,
2008
).
89.
See https://code-aster.org for information about Salome-Meca software.
90.
D.
Gisen
, “
Generation of a 3D mesh using snappyhexmesh featuring anisotropic refinement and near-wall layers
,” in
ICHE 2014. Proceedings of the 11th International Conference on Hydroscience & Engineering
(
2014
), pp.
983
990
.
91.
L.
Marroquin
,
G.
Tirado-Conte
,
R.
Pracoń
,
W.
Streb
,
H.
Gutierrez
,
G.
Boccuzzi
,
D.
Arzamendi-Aizpurua
,
I.
Cruz-González
,
J. M.
Ruiz-Nodar
,
J.-S.
Kim
,
X.
Freixa
,
J. R.
Lopez-Minguez
,
O.
De Backer
,
R.
Ruiz-Salmeron
,
A.
Dominguez
,
A.
McInerney
,
V.
Peral
,
R.
Estevez-Loureiro
,
E.
Fernandez-Nofrerias
,
A. B.
Freitas-Ferraz
,
F.
Saia
,
Z.
Huczek
,
L.
Gheorghe
,
P.
Salinas
,
M.
Demkow
,
J. R.
Delgado-Arana
,
E.
Fernandez Peregrina
,
Z.
Kalarus
,
A.
Elvira Laffond
,
Y.
Jang
,
J. C.
Fernandez Camacho
,
O.-H.
Lee
,
J. M.
Hernández-Garcia
,
C.
Mas-Llado
,
B.
Caneiro Queija
,
I. J.
Amat-Santos
,
M.
Dabrowski
,
J.
Rodés-Cabau
, and
L.
Nombela Franco
, “
Management and outcomes of patients with left atrial appendage thrombus prior to percutaneous closure
,”
Heart
108
,
1098
1106
(
2022
).
92.
J.
Mill
,
J.
Harrison
,
B.
Legghe
,
A. L.
Olivares
,
X.
Morales
,
J.
Noailly
,
X.
Iriart
,
H.
Cochet
,
M.
Sermesant
, and
O.
Camara
, “
In-silico analysis of the influence of pulmonary vein configuration on left atrial haemodynamics and thrombus formation in a large cohort
,” in
International Conference on Functional Imaging and Modeling of the Heart
(
Springer
,
2021
), pp.
605
616
.
93.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
94.
A.
Wufsus
,
N.
Macera
, and
K.
Neeves
, “
The hydraulic permeability of blood clots as a function of fibrin and platelet density
,”
Biophys. J.
104
,
1812
1823
(
2013
).
95.
S. P.
Jackson
, “
The growing complexity of platelet aggregation
,”
Blood
109
,
5087
5095
(
2007
).
96.
M.
Merten
and
P.
Thiagarajan
, “
P-selectin expression on platelets determines size and stability of platelet aggregates
,”
Circulation
102
,
1931
1936
(
2000
).
97.
Y.
Chen
,
L. A.
Ju
,
F.
Zhou
,
J.
Liao
,
L.
Xue
,
Q. P.
Su
,
D.
Jin
,
Y.
Yuan
,
H.
Lu
,
S. P.
Jackson
, and
C.
Zhu
, “
An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation
,”
Nat. Mater.
18
,
760
769
(
2019
).
98.
O. V.
Kim
,
Z.
Xu
,
E. D.
Rosen
, and
M. S.
Alber
, “
Fibrin networks regulate protein transport during thrombus development
,”
PLoS Comput. Biol.
9
,
e1003095
(
2013
).
99.
A. H.
Gillespie
and
A.
Doctor
, “
Red blood cell contribution to hemostasis
,”
Front. Pediatr.
9
,
629824
(
2021
).
100.
D. Y.
Nechipurenko
,
N.
Receveur
,
A. O.
Yakimenko
,
T. O.
Shepelyuk
,
A. A.
Yakusheva
,
R. R.
Kerimov
,
S. I.
Obydennyy
,
A.
Eckly
,
C.
Léon
,
C.
Gachet
,
E. L.
Grishchuk
,
F. I.
Ataullakhanov
,
P. H.
Mangin
, and
M. A.
Panteleev
, “
Clot contraction drives the translocation of procoagulant platelets to thrombus surface
,”
Arterioscler. Thromb. Vasc. Biol.
39
,
37
47
(
2019
).
101.
A.
Bouchnita
,
P.
Miossec
,
A.
Tosenberger
, and
V.
Volpert
, “
Modeling of the effects of IL-17 and TNF-α on endothelial cells and thrombus growth
,”
C. R. Biol.
340
,
456
473
(
2017
).
102.
Y. V.
Krasotkina
,
E. I.
Sinauridze
, and
F. I.
Ataullakhanov
, “
Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion
,”
Biochim. Biophys. Acta
1474
,
337
345
(
2000
).
103.
T.
Galochkina
,
A.
Bouchnita
,
P.
Kurbatova
, and
V.
Volpert
, “
Reaction-diffusion waves of blood coagulation
,”
Math. Biosci.
288
,
130
139
(
2017
).
104.
F.
Shen
,
C. J.
Kastrup
,
Y.
Liu
, and
R. F.
Ismagilov
, “
Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate
,”
Arterioscler. Thromb. Vasc. Biol.
28
,
2035
2041
(
2008
).
105.
J. O.
Taylor
,
K. P.
Witmer
,
T.
Neuberger
,
B. A.
Craven
,
R. S.
Meyer
,
S.
Deutsch
, and
K. B.
Manning
, “
In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses
,”
J. Biomech. Eng.
136
,
071012
(
2014
).
106.
C.
Min
and
W.
Tao
, “
An under-relaxation factor control method for accelerating the iteration convergence of flow field simulation
,”
Eng. Comput.
24
,
793
813
(
2007
).
107.
L.
Chen
,
C.
Xu
,
W.
Chen
, and
C.
Zhang
, “
Left atrial appendage orifice area and morphology is closely associated with flow velocity in patients with nonvalvular atrial fibrillation
,”
BMC Cardiovasc. Disord.
21
,
442
(
2021
).
108.
J. M.
Lee
,
J.
Shim
,
J.-S.
Uhm
,
Y. J.
Kim
,
H.-J.
Lee
,
H.-N.
Pak
,
M.-H.
Lee
, and
B.
Joung
, “
Impact of increased orifice size and decreased flow velocity of left atrial appendage on stroke in nonvalvular atrial fibrillation
,”
Am. J. Cardiol.
113
,
963
969
(
2014
).
109.
S. K.
Braekkan
,
E. B.
Mathiesen
,
I.
Njølstad
,
T.
Wilsgaard
, and
J.-B.
Hansen
, “
Hematocrit and risk of venous thromboembolism in a general population. The TROMSØ study
,”
Haematologica
95
,
270
(
2010
).
110.
A. J.
Schreijer
,
P. H.
Reitsma
, and
S. C.
Cannegieter
, “
High hematocrit as a risk factor for venous thrombosis: Cause or innocent bystander?
,”
Haematologica
95
,
182
(
2010
).
111.
J.
Yang
,
Z.
Bai
,
C.
Song
,
H.
Ding
,
M.
Chen
,
J.
Sun
, and
X.
Liu
, “
Research on the internal flow field of left atrial appendage and stroke risk assessment with different blood models
,”
Bioengineering
10
,
944
(
2023
).
112.
L.
Alinezhad
,
F.
Ghalichi
,
M.
Ahmadlouydarab
, and
M.
Chenaghlou
, “
Left atrial appendage shape impacts on the left atrial flow hemodynamics: A numerical hypothesis generating study on two cases
,”
Comput. Methods Programs Biomed.
213
,
106506
(
2022
).
113.
S. W.
Schneider
,
S.
Nuschele
,
A.
Wixforth
,
C.
Gorzelanny
,
A.
Alexander-Katz
,
R. R.
Netz
, and
M. F.
Schneider
, “
Shear-induced unfolding triggers adhesion of von Willebrand factor fibers
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
7899
7903
(
2007
).
114.
M.
Zhussupbekov
,
R. M.
Rojano
,
W.-T.
Wu
, and
J. F.
Antaki
, “
von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis
,”
Biophys. J.
121
,
4033
4047
(
2022
).
115.
A. V.
Belyaev
and
Y. K.
Kushchenko
, “
Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations
,”
Biomech. Model. Mechanobiol.
22
,
785
(
2023
).
116.
R. M.
Rojano
,
A.
Lai
,
M.
Zhussupbekov
,
G. W.
Burgreen
,
K.
Cook
, and
J. F.
Antaki
, “
A fibrin enhanced thrombosis model for medical devices operating at low shear regimes or large surface areas
,”
PLoS Comput. Biol.
18
,
e1010277
(
2022
).
117.
K.
Kumagai
,
M.
Fukuchi
,
J.
Ohta
,
S.
Baba
,
K.
Oda
,
H.
Akimoto
,
Y.
Kagaya
,
J.
Watanabe
,
K.
Tabayashi
, and
K.
Shirato
, “
Expression of the von Willebrand factor in atrial endocardium is increased in atrial fibrillation depending on the extent of structural remodeling
,”
Circ. J.
68
,
321
327
(
2004
).
118.
W. E.
Wysokinski
,
R. M.
Melduni
,
N. M.
Ammash
,
D. T.
Vlazny
,
E.
Konik
,
R. A.
Saadiq
,
I.
Gosk-Bierska
,
J.
Slusser
,
D.
Grill
, and
R. D.
McBane
, “
Von Willebrand factor and ADAMTS13 as predictors of adverse outcomes in patients with nonvalvular atrial fibrillation
,”
CJC Open
3
,
318
326
(
2021
).
119.
D.
Hernández-Romero
,
Á.
Lahoz
,
V.
Roldan
,
E.
Jover
,
A. I.
Romero-Aniorte
,
C. M.
Martinez
,
R.
Jara-Rubio
,
J. M.
Arribas
,
A.
Garcia-Alberola
,
S.
Cánovas
,
M.
Valdés
, and
F.
Marín
, “
Von Willebrand factor is associated with atrial fibrillation development in ischaemic patients after cardiac surgery
,”
Europace
18
,
1328
1334
(
2015
).
120.
M.
Fukuchi
,
J.
Watanabe
,
K.
Kumagai
,
Y.
Katori
,
S.
Baba
,
K.
Fukuda
,
T.
Yagi
,
A.
Iguchi
,
H.
Yokoyama
,
M.
Miura
,
Y.
Kagaya
,
S.
Sato
,
K.
Tabayashi
, and
K.
Shirato
, “
Increased von Willebrand factor in the endocardium as a local predisposing factor for thrombogenesis in overloaded human atrial appendage
,”
J. Am. Coll. Cardiol.
37
,
1436
1442
(
2001
).
121.
M.
Nishimura
,
T.
Hashimoto
,
H.
Kobayashi
,
T.
Fukuda
,
K.
Okino
,
N.
Yamamoto
,
N.
Iwamoto
,
N.
Nakamura
,
T.
Yoshikawa
, and
T.
Ono
, “
The high incidence of left atrial appendage thrombosis in patients on maintenance haemodialysis
,”
Nephrol. Dial. Transplant.
18
,
2339
2347
(
2003
).
122.
J.
Mill
,
H.
Montoliu
,
A. H.
Moustafa
,
A. L.
Olivares
,
C.
Albors
,
A. M.
Aguado
,
E.
Medina
,
M.
Ceresa
,
X.
Freixa
,
D.
Arzamendi
et al, “
Domain expert evaluation of advanced visual computing solutions and 3D printing for the planning of the left atrial appendage occluder interventions
,”
Int J Bioprint
9
,
640
(
2022
).
123.
T.
Stomaci
,
F.
Buonamici
,
G.
Gelati
,
F.
Meucci
, and
M.
Carfagni
, “
3D-printed models for left atrial appendage occlusion planning: A detailed workflow
,”
Rapid Prototyp. J.
29
,
74
81
(
2023
).
124.
O.
Goitein
,
N.
Fink
,
V.
Guetta
,
R.
Beinart
,
Y.
Brodov
,
E.
Konen
,
D.
Goitein
,
E.
Di Segni
,
A.
Grupper
, and
M.
Glikson
, “
Printed MDCT 3D models for prediction of left atrial appendage (LAA) occluder device size: A feasibility study
,”
EuroIntervention
13
,
e1076
e1079
(
2017
).
125.
O.
De Backer
,
X.
Iriart
,
J.
Kefer
,
J. E.
Nielsen-Kudsk
,
A.
Aminian
,
L.
Rosseel
,
K. F.
Kofoed
,
J.
Odenstedt
,
S.
Berti
,
J.
Saw
et al, “
Impact of computational modeling on transcatheter left atrial appendage closure efficiency and outcomes
,”
Cardiovasc. Interv.
16
,
655
666
(
2023
).
126.
L.
Yang
,
T.
Neuberger
, and
K. B.
Manning
, “
In vitro real-time magnetic resonance imaging for quantification of thrombosis
,”
Magn. Reson. Mater. Phys.
34
,
285
211
(
2020
).
You do not currently have access to this content.