We introduce a new reduction of the motion of three point vortices in a two-dimensional ideal fluid. This proceeds in two stages: a change of variables to Jacobi coordinates and then a Nambu reduction. The new coordinates demonstrate that the dynamics evolve on a two-dimensional manifold whose topology depends on the sign of a parameter κ2 that arises in the reduction. For κ 2 > 0, the phase space is spherical, while for κ 2 < 0, the dynamics are confined to the upper sheet of a two-sheeted hyperboloid. We contrast this reduction with earlier reduced systems derived by Gröbli, Aref, and others in which the dynamics are determined from the pairwise distances between the vortices. The new coordinate system overcomes two related shortcomings of Gröbli's reduction that have made understanding the dynamics difficult: their lack of a standard phase plane and their singularity at all configurations in which the vortices are collinear. We apply this to two canonical problems. We first discuss the dynamics of three identical vortices and then consider the scattering of a propagating dipole by a stationary vortex. We show that the points dividing direct and exchange scattering solutions correspond to the locations of the invariant manifolds of equilibria of the reduced equations and relate changes in the scattering diagram as the circulation of one vortex is varied to bifurcations of these equilibria.

1.
P. K.
Newton
,
The N-Vortex Problem, Analytical Techniques
(
Springer
,
2001
).
2.
V. V.
Meleshko
and
H.
Aref
, “
A bibliography of vortex dynamics 1858–1956
,”
Adv. Appl. Mech.
41
,
197
292
(
2007
).
3.
K.
Lydon
,
S. V.
Nazarenko
, and
J.
Laurie
, “
Dipole dynamics in the point vortex model
,”
J. Phys. A
55
,
385702
(
2022
).
4.
A. J.
Chorin
and
J. E.
Marsden
,
A mathematical introduction to fluid mechanics
, 3rd ed., Texts in Applied Mathematics (
Springer-Verlag
,
1993
), Vol.
4
.
5.
H.
von Helmholtz
, “
Über Integrale der hydrodynamischen Gleichungen, welcheden Wirbelbewegungen entsprechen
,”
J. Reine Angew. Math.
1858
,
25
55
.
6.
G.
Kirchhoff
,
Vorlesungen Über Mathematische Physik: Mechanik, Vorlesungen Über Mathematische Physik
(
Teubner
,
Leipzig
,
1876
), Vol.
1
.
7.
W.
Gröbli
, “
Spezielle probleme über die bewegung geradliniger paralleler wirbelfäden
,” Ph.D. thesis (
Georg-August-Universität Göttingen
,
1877
).
8.
H.
Aref
, “
Motion of three vortices
,”
Phys. Fluids
22
,
393
(
1979
).
9.
J. L.
Synge
, “
On the motion of three vortices
,”
Can. J. Math.
1
,
257
270
(
1949
).
10.
E. A.
Novikov
, “
Dynamics and statistics of a system of vortices
,”
Sov. Phys. JETP
41
,
937
943
(
1975
).
11.
J.
Tavantzis
and
L.
Ting
, “
The dynamics of three vortices revisited
,”
Phys. Fluids
31
,
1392
(
1988
).
12.
D.
Blackmore
,
L.
Ting
, and
O.
Knio
, “
Studies of perturbed three vortex dynamics
,”
J. Math. Phys.
48
,
065402
(
2007
).
13.
A.
Müller
and
P.
Névir
, “
A geometric application of Nambu mechanics: The motion of three point vortices in the plane
,”
J. Phys. A
47
,
105201
105216
(
2014
).
14.
S. S.
Kallyadan
and
P.
Shukla
, “
Self-similar vortex configurations: Collapse, expansion, and rigid-vortex motion
,”
Phys. Rev. Fluids
7
,
114701
(
2022
).
15.
J. N.
Reinaud
, “
Self-similar collapse of three geophysical vortices
,”
Geophys. Astrophys. Fluid Dyn.
115
,
369
392
(
2021
).
16.
J. N.
Reinaud
,
D. G.
Dritschel
, and
R. K.
Scott
, “
Self-similar collapse of three vortices in the generalised Euler and quasi-geostrophic equations
,”
Physica D
434
,
133226
(
2022
).
17.
T.
Gotoda
, “
Self-similar motions and related relative equilibria in the N-point vortex system
,”
J. Dyn. Differ. Equations
33
,
1759
1777
(
2021
).
18.
Y.
Hirakui
and
T.
Yajima
, “
Geometrical classification of self-similar motion of two-dimensional three point vortex system by deviation curvature on Jacobi field
,”
Adv. Math. Phys.
2021
,
9979529
.
19.
H.
Aref
,
N.
Rott
, and
H.
Thomann
, “
Gröbli's solution of the three-vortex problem
,”
Ann. Rev. Fluid Mech.
24
,
1
21
(
1992
).
20.
W.
Gröbli
, “
An English translation of Gröbli's Ph.D. dissertation: “Specielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden
”,” arXiv:2404.01305 (
2024
).
21.
R.
Conte
and
L.
de Seze
, “
Exact solution of the planar motion of three arbitrary point vortices
,”
Mod. Phys. Lett. B
29
,
1530017
(
2015
).
22.
H.
Aref
, “
Stability of relative equilibria of three vortices
,”
Phys. Fluids
21
,
094101
(
2009
).
23.
V. S.
Krishnamurthy
,
H.
Aref
, and
M. A.
Stremler
, “
Evolving geometry of a vortex triangle
,”
Phys. Rev. Fluids
3
,
024702
(
2018
).
24.
V.
Makarov
, “
Group scattering of point vortices on an unbounded plane
,”
J. Fluid Mech.
911
,
A24
(
2021
).
25.
M. A.
Stremler
, “
Something old, something new: Three point vortices on the plane
,”
Regular Chaotic Dyn.
26
,
482
504
(
2021
).
26.
C. G. J.
Jacobi
,
Vorlesungen Über Dynamik
(
C. F. Amelangsche Verlagsbuchhandlung
,
1866
).
27.
S. A.
Smith
and
B. M.
Boghosian
, “
Robust numerical method for integration of point-vortex trajectories in two dimensions
,”
Phys. Rev. E
83
,
056702
(
2011
).
28.
Q.
Luo
,
Y.
Chen
, and
Q.
Liu
, “
Global phase diagrams of three point vortices
,”
Int. J. Bifurcation Chaos
32
,
2250025
(
2022
).
29.
Y.
Nambu
, “
Generalized Hamiltonian dynamics
,”
Phys. Rev. D
7
,
2405
2412
(
1973
).
30.
D. D.
Holm
,
Geometric Mechanics Part I: Dynamics and Symmetry
, 2nd ed. (
Imperial College Press
,
2011
).
31.
D. D.
Holm
,
Geometric Mechanics Part II: Rotating, Translating and Rolling
, 2nd ed. (
Imperial College Press
,
2011
).
32.
D. D.
Holm
,
T.
Schmah
, and
C.
Stoica
,
Geometric Mechanics and Symmetry
(
Oxford University Press
,
2009
).
33.
G.
Badin
and
A. M.
Barry
, “
Collapse of generalized Euler and surface quasigeostrophic point vortices
,”
Phys. Rev. E
98
,
023110
(
2018
).
34.
K.
Efstathiou
and
D.
Sadovskií
, “
No polar coordinates (R. H. Cushman)
,” in
Geometric Mechanics and Symmetry: The Peyresq Lectures
, edited by
J.
Montaldi
and
T.
Ratiu
(
Cambridge University Press
,
2005
), pp.
211
302
.
35.
H.
Yim
,
S.-C.
Kim
, and
S.-I.
Sohn
, “
Motion of three geostrophic Bessel vortices
,”
Physica D
441
,
133509
(
2022
).
36.
H.
Aref
and
M. A.
Stremler
, “
Four-vortex motion with zero total circulation and impulse
,”
Phys. Fluids
11
,
3704
3715
(
1999
).
37.
B.
Eckhardt
and
H.
Aref
, “
Integrable and chaotic motions of four vortices II. Collision dynamics of vortex pairs
,”
Philos. Trans. R. Soc. A
326
,
655
696
(
1988
).
38.
T.
Price
, “
Chaotic scattering of two identical point vortex pairs
,”
Phys. Fluids
5
,
2479
2483
(
1993
).
39.
L.
Tophøj
and
H.
Aref
, “
Chaotic scattering of two identical point vortex pairs revisited
,”
Phys. Fluids
20
,
093605
(
2008
).
You do not currently have access to this content.