In deep stormwater tunnel systems (DSTSs), entrapped air pockets are prone to pressurization and deformation during rapid filling, resulting in pressure surges that threaten system security. This study investigates the effects of structural and inflow parameters on peak pressures. To simulate the pressure surges of entrapped air pockets, a rigid-column model was developed for a simplified DSTS configuration comprising two shafts and one tunnel. The global sensitivities of the air pocket, system structure, and inflow parameters were calculated using the Extended Fourier Amplitude Sensitivity Test (EFAST), which employed indicators of the maximum pressure and relative increment. The results indicate that parameters related to the shape and initial state of the air pocket exert a substantial and direct effect on pressure surges in rapid filling, whereas tunnel system parameters tend to exhibit minimal influence. Notably, compared to the total inflow discharge, the flow difference between two shafts imposes a more significant and direct impact. For the maximum pressure of air pocket, the initial pressure and the maximum water level height of shafts demonstrate more pronounced effects. The proposed sensitivity analysis could be integrated into methodologies for system safety assessment, while the rigid-column model may be extended to accommodate multiple shafts and air pockets.

1.
Chosie
,
C. D.
,
Hatcher
,
T. M.
, and
Vasconcelos
,
J. G.
, “
Experimental and numerical investigation on the motion of discrete air pockets in pressurized water flows
,”
J. Hydraul. Eng.
140
(
8
),
64
64
(
2014
).
2.
Cukier
,
R. I.
,
Levine
,
H. B.
, and
Shuler
,
K. E.
, “
Nonlinear sensitivity analysis of multiparameter model systems
,”
J. Comput. Phys.
26
(
1
),
1
42
(
1978
).
3.
DeJonge
,
K. C.
,
Ascough
,
J. C.
,
Ahmadi
,
M.
,
Andales
,
A. A.
, and
Arabi
,
M.
, “
Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments
,”
Ecol. Modell.
231
,
113
125
(
2012
).
4.
Glauser
,
S.
and
Wickenhauser
,
M.
, “
Bubble movement in downward-inclined pipes
,”
J. Hydraul. Eng.
135
(
11
),
1012
1015
(
2009
).
5.
Hashimoto
,
K.
,
Imaeda
,
M.
, and
Osayama
,
A.
, “
Transients of fluid lines containing an air pocket or liquid column
,”
J. Fluid Control
18
(
4
),
38
54
(
1988
).
6.
Hatcher
,
T. M.
and
Vasconcelos
,
J. G.
, “
Peak pressure surges and pressure damping following sudden air pocket compression
,”
J. Hydraul. Eng.
143
(
4
),
04016094
(
2017
).
7.
Hou
,
Q.
,
Tijsseling
,
A. S.
,
Laanearu
,
J.
,
Annus
,
I.
,
Koppel
,
T.
,
Bergant
,
A.
et al, “
Experimental investigation on rapid filling of a large-scale pipeline
,”
J. Hydraul. Eng.
140
(
11
),
04014053
(
2014
).
8.
Huang
,
B.
and
Zhu
,
D. Z.
, “
Linearized solution for rapid filling of horizontal pipe with entrapped air
,”
J. Eng. Mech.
146
(
11
),
06020006
(
2020
).
9.
Huang
,
B.
and
Zhu
,
D. Z.
, “
Rigid-column model for rapid filling in a partially filled horizontal pipe
,”
J. Hydraul. Eng.
147
(
2
),
06020018
(
2021
).
10.
Lee
,
N. H.
,
Effect of Pressurization and Expulsion of Entrapped Air in Pipelines
(
Georgia Institute of Technology
,
2005
).
11.
Li
,
L.
,
Zhu
,
D. Z.
, and
Huang
,
B.
, “
Analysis of pressure transient following rapid filling of a vented horizontal pipe
,”
Water
10
(
11
),
1698
(
2018
).
12.
Linardatos
,
P.
,
Papastefanopoulos
,
V.
, and
Kotsiantis
,
S.
, “
Explainable ai: A review of machine learning interpretability methods
,”
Entropy
23
(
1
),
18
(
2020
).
13.
Liou
,
C. P.
and
Hunt
,
W. A.
, “
Filling of pipelines with undulating elevation profiles
,”
J. Hydraul. Eng.
122
(
10
),
534
539
(
1996
).
14.
Malekpour
,
A.
and
Karney
,
B. W.
, “
Profile-induced column separation and rejoining during rapid pipeline filling
,”
J. Hydraul. Eng.
140
(
11
),
04014054
(
2014
).
15.
Malekpour
,
A.
,
Karney
,
B. W.
, and
Nault
,
J.
, “
Physical understanding of sudden pressurization of pipe systems with entrapped air: Energy auditing approach
,”
J. Hydraul. Eng.
142
(
2
),
04015044
(
2016
).
16.
Martin
,
C. S.
, “
Entrapped air in pipelines
,” in
Proceedings of the Second International Conference on Pressure Surges
(
BHRA
,
England, London
,
1976
), pp.
15
27
.
17.
Martins
,
N.
,
De Lgado
,
J. N.
,
Ramos
,
H. M.
, and
Covas
,
D.
, “
Maximum pressures in a rapidly filling pipeline with entrapped air using a CFD model
,”
J. Hydraul. Res.
55
(
4
),
506
519
(
2017
).
18.
Morris
,
M. D.
, “
Factorial sampling plans for preliminary computational experiments
,”
Technometrics
33
(
2
),
161
174
(
1991
).
19.
Pianosi
,
F.
,
Beven
,
K.
,
Freer
,
J.
,
Hall
,
J. W.
,
Rougier
,
J.
,
Stephenson
,
D. B.
, and
Wagener
,
T.
, “
Sensitivity analysis of environmental models: A systematic review with practical workflow
,”
Environ. Modell. Software
79
,
214
232
(
2016
).
20.
Politano
,
M.
,
Odgaard
,
A. J.
, and
Klecan
,
W.
, “
Case study: Numerical evaluation of hydraulic transients in a combined sewer overflow tunnel system
,”
J. Hydraul. Eng.
133
(
10
),
1103
1110
(
2007
).
21.
Pothof
,
I.
and
Clemens
,
F.
, “
On elongated air pockets in downward sloping pipes
,”
J. Hydraul. Res.
48
(
4
),
499
503
(
2010
).
22.
Rogalla
,
B. U.
and
Wolters
,
A.
, “
Slow transients in closed conduit flow
,”
Computer Modeling Free-Surface and Pressurized Flows
, edited by
M.
Hanif Chaudhry
and
Larry W.
Mays
(
Kluwer Academic Publishers
,
1994
), pp.
613
671
.
23.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P. S.
, “
A quantitative model-independent method for global sensitivity analysis of model output
,”
Technometrics
41
(
1
),
39
56
(
1999
).
24.
Sobol
,
I. M.
, “
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
,”
Math. Comput. Simul.
55
(
1
),
271
280
(
2001
).
25.
Tijsseling
,
A. S.
,
Hou
,
Q.
, and
Bozkuş
,
Z.
, “
Analytical expressions for liquid-column velocities in pipelines with entrapped gas
,” in
Proceedings of the Pressure Vessels and Piping Conference
(
ASME
,
New York
,
2015
).
26.
Vasconcelos
,
J. G.
,
Wright
,
S. J.
, and
Roe
,
P. L.
, “
Improved simulation of flow regime transition in sewers: Two-component pressure approach
,”
J. Hydraul. Eng.
132
(
6
),
553
562
(
2006
).
27.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Investigation of rapid filling of poorly ventilated stormwater storage tunnels
,”
J. Hydraul. Eng.
47
(
5
),
547
558
(
2009
).
28.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Geysering generated by large air pockets released through water-filled ventilation shafts
,”
J. Hydraul. Eng.
137
(
5
),
543
555
(
2011
).
29.
Vasconcelos
,
J. G.
and
Leite
,
G. M.
, “
Pressure surges following sudden air pocket entrapment in storm-water tunnels.
J. Hydraul. Eng.
138
(
12
),
1081
1089
(
2012
).
30.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Anticipating transient problems during the rapid filling of deep stormwater storage tunnel systems
,”
J. Hydraul. Eng.
143
(
3
),
06016025
(
2017
).
31.
Wang
,
Y.
,
Yu
,
X.
,
Qin
,
H. X.
et al, “
Analysis of pressure surges for water filling in deep stormwater storage tunnels with entrapped air-pocket using a VOF model
,”
AQUA—Water Infrastruct., Ecosyst. Soc.
71
(
9
),
992
1001
(
2022
).
32.
Warda
,
H. A.
,
Wahba
,
E. M.
, and
Ahmed
,
E. N.
, “
On the hydraulics of downward sloping pipes with entrapped air pockets
,”
J. Fluids Eng.
142
(
1
),
014503
(
2020
).
33.
Zhou
,
F.
,
Hicks
,
F. E.
, and
Steffler
,
P. M.
, “
Transient flow in a rapidly filling horizontal pipe containing trapped air
,”
J. Hydraul. Eng.
128
(
6
),
625
634
(
2002
).
34.
Zhou
,
L.
,
Liu
,
D.
, and
Karney
,
B.
, “
Investigation of hydraulic transients of two entrapped air pockets in a water pipeline
,”
J. Hydraul. Eng.
139
(
9
),
949
959
(
2013
).
You do not currently have access to this content.