In maritime engineering, ensuring vessel stability remains a paramount concern. This study investigates the hydrodynamic response of Magnus anti-rolling devices, modeled as swinging or slewing rotating cylinders, under a ship's rolling motion. Through numerical simulations using the overset mesh technique and large eddy simulation, we analyze various parameters, including rolling angles, rotating speeds, and swinging amplitudes. Our findings highlight the importance of considering the ship's degree of freedom as substantial ship rolling significantly affects hydrodynamic coefficients on the rotating cylinder. We observe interesting dynamics during slewing motion, with the cylinder forming a spiral tip vortex. Optimizing the cylinder's rotating speed enhances the lift-to-drag ratio, particularly for small rolling angles. Furthermore, the effective lift generated during swinging motion is lower than during slewing motion, emphasizing the need to optimize the swinging amplitude, which is recommended to be no less than 170°. These insights advance our understanding of Magnus anti-rolling devices and offer practical guidance for improving vessel stability in complex maritime environments.

1.
D.
Vassalos
,
D.
Paterson
,
F.
Mauro
,
M. P.
Mujeeb-Ahmed
, and
E.
Boulougouris
, “
Process, methods and tools for ship damage stability and flooding risk assessment
,”
Ocean Eng.
266
,
113062
(
2022
).
2.
G.
Elidolu
,
S. I.
Sezer
,
E.
Akyuz
,
O.
Arslan
, and
Y.
Arslanoglu
, “
Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach
,”
Reliab. Eng. Syst. Saf.
231
,
108975
(
2023
).
3.
J.
Gong
,
J.
Liu
,
Y.
Dai
,
C.
Guo
, and
T.
Wu
, “
Dynamics of stabilizer fins on the waterjet-propelled ship
,”
Ocean Eng.
222
,
108595
(
2021
).
4.
J.
Lin
,
Y.
Han
,
C.
Guo
,
Y.
Su
, and
R.
Zhong
, “
Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect
,”
Phys. Fluids
34
(
5
),
057102
(
2022
).
5.
Z. F.
Li
,
Y. Y.
Shi
, and
G. X.
Wu
, “
Interaction of wave with a body floating on a wide polynya
,”
Phys. Fluids
29
(
9
),
097104
(
2017
).
6.
J.
Lin
,
Y.
Han
,
Y.
Su
, and
Z.
Zhang
, “
Magnus antirolling system for ships at zero speed
,”
IEEE Trans. Transp. Electrif.
7
(
4
),
3062
3069
(
2021
).
7.
J.
Lin
,
S.
Wang
,
H. D.
Yao
, and
Y.
Su
, “
Angle of attack impact on flow characteristics around finite-length rotating columns
,”
Phys. Fluids
36
(
6
),
065117
(
2024
).
8.
K. S.
Song
,
S. M.
Kim
,
M. K.
Kwak
, and
W.
Zhu
, “
Development of a control algorithm for active control of rolling motion of a ship using a gyrostabilizer
,”
Ocean Eng.
280
,
114669
(
2023
).
9.
M. A.
Irkal
,
S.
Nallayarasu
, and
S. K.
Bhattacharyya
, “
CFD approach to roll damping of ship with bilge keel with experimental validation
,”
Appl. Ocean Res.
55
,
1
17
(
2016
).
10.
P.
Temarel
,
W.
Bai
,
A.
Bruns
,
Q.
Derbanne
,
D.
Dessi
,
S.
Dhavalikar
,
N.
Fonseca
,
T.
Fukasawa
,
X.
Gu
,
A.
Nestegård
,
A.
Papanikolaou
,
J.
Parunov
,
K. H.
Song
, and
S.
Wang
, “
Prediction of wave-induced loads on ships: Progress and challenges
,”
Ocean Eng.
119
,
274
308
(
2016
).
11.
J.
Parunov
,
C. G.
Soares
,
S.
Hirdaris
, and
X.
Wang
, “
Uncertainties in modelling the low-frequency wave-induced global loads in ships
,”
Mar. Struct.
86
,
103307
(
2022
).
12.
R. B.
Kjaer
,
Y.
Shao
, and
J. H.
Walther
, “
Experimental and CFD analysis of roll damping of a wind turbine installation vessel
,”
Appl. Ocean Res.
143
,
103857
(
2024
).
13.
Y.
Zhang
,
P.
Wang
,
P.
Yu
, and
J.
Hu
, “
Numerical and experimental study on nonlinear roll damping characteristics of trimaran vessel
,”
Ocean Eng.
247
,
110778
(
2022
).
14.
A.
Rezaei
and
M.
Tabatabaei
, “
Ship roll stabilization using an adaptive fractional-order sliding mode controller
,”
Ocean Eng.
287
,
115883
(
2023
).
15.
F.
Cakici
and
E.
Kahramanoglu
, “
Numerical roll motion control by using fins based on the linear quadratic regulator and dynamic mode decomposition
,”
Appl. Ocean Res.
142
,
103828
(
2024
).
16.
H.
Wu
,
R.
Rao
,
H.
Guo
,
D.
Zhang
,
X.
Li
,
L.
Zhao
,
Z.
Li
, and
Y.
Peng
, “
Research on performance of solid-liquid triboelectric nanogenerators based on anti-rolling tank
,”
Appl. Energy
353
,
122153
(
2024
).
17.
R.
Subramanian
and
P. V.
Jyothish
, “
Genetic algorithm based design optimization of a passive anti-roll tank in a sea going vessel
,”
Ocean Eng.
203
,
107216
(
2020
).
18.
Ö. İ.
Aydın
and
H.
Akyıldız
, “
On the Magnus rotating roll stabilizer; numerical and experimental studies
,”
GİDB Dergi
22
,
37
68
(
2022
), https://dergipark.org.tr/en/download/article-file/2606893.
19.
M.
Sun
,
H.
Lian
,
T.
Luan
,
X.
Zhang
,
B.
Wu
, and
H.
Wang
, “
Lift analysis and anti-rolling control system design of Magnus rotating roll stabilizer at full speed range
,”
Ocean Eng.
290
,
116331
(
2023
).
20.
P.
Sundaram
,
T. K.
Sengupta
,
A.
Sengupta
, and
V. K.
Suman
, “
Multiscale instabilities of Magnus–Robins effect for compressible flow past rotating cylinder
,”
Phys. Fluids
33
(
3
),
034129
(
2021
).
21.
J.
Lin
and
H. D.
Yao
, “
Modified Magnus effect and vortex modes of rotating cylinder due to interaction with free surface in two-phase flow
,”
Phys. Fluids
35
(
12
),
123614
(
2023
).
22.
G.
Imani
and
M.
Mozafari-Shamsi
, “
On the Magnus effect of a rotating porous circular cylinder in uniform flow: A lattice Boltzmann study
,”
Phys. Fluids
35
(
2
),
023608
(
2023
).
23.
J.
Liu
,
W.
Ma
,
L.
Jin
, and
Q.
Liu
, “
Large eddy simulation of end effects on a cylinder rotor
,”
Phys. Fluids
36
(
2
),
024120
(
2024
).
24.
A. N.
Alkhaledi
,
S.
Sampath
, and
P.
Pilidis
, “
Techno environmental assessment of Flettner rotor as assistance propulsion system for LH2 tanker ship fuelled by hydrogen
,”
Sustainable Energy Technol. Assess.
55
,
102935
(
2023
).
25.
R.
Lu
and
J. W.
Ringsberg
, “
Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology
,”
Ships Offshore Struct.
15
(
3
),
249
258
(
2020
).
26.
L.
Liang
,
Y.
Jiang
,
Q.
Zhang
, and
Z.
Le
, “
Aspect ratio effects on hydrodynamic characteristics of Magnus stabilizers
,”
Ocean Eng.
216
,
107699
(
2020
).
27.
D.
Ozturk
, “
Performance of a Magnus effect-based cylindrical roll stabilizer on a full-scale Motor-yacht
,”
Ocean Eng.
218
,
108247
(
2020
).
28.
J.
Lin
,
C.
Guo
,
D.
Zhao
,
Y.
Han
, and
Y.
Su
, “
Hydrodynamic simulation for evaluating Magnus anti-rolling devices with varying angles of attack
,”
Ocean Eng.
260
,
111949
(
2022
).
29.
J.
Lin
,
Y.
Han
,
Y.
Su
,
Y.
Wang
,
Z.
Zhang
, and
R.
Jiang
, “
Hydrodynamic performance of a Magnus anti-rolling device at zero and low ship speeds
,”
Ocean Eng.
229
,
109008
(
2021
).
30.
Z.
Gao
and
X.
Tian
, “
Numerical study on the wave-induced roll motion of a damaged ship in head seas
,”
Appl. Ocean Res.
114
,
102805
(
2021
).
31.
J.
Jiao
,
S.
Huang
, and
C. G.
Soares
, “
Numerical investigation of ship motions in cross waves using CFD
,”
Ocean Eng.
223
,
108711
(
2021
).
32.
Y.
Liu
,
Y.
Zhu
,
B.
Huang
, and
Q.
Wu
, “
Mode decomposition and simulation of cloud cavity behaviors around a composite hydrofoil
,”
Phys. Fluids
35
(
8
),
083308
(
2023
).
33.
S.
Wang
,
G.
He
, and
T.
Liu
, “
Estimating lift from wake velocity data in flapping flight
,”
J. Fluid Mech.
868
,
501
537
(
2019
).
34.
Y.
Su
,
J.
Lin
,
D.
Zhao
,
C.
Guo
, and
H.
Guo
, “
Influence of a pre-swirl stator and rudder bulb system on the propulsion performance of a large-scale ship model
,”
Ocean Eng.
218
,
108189
(
2020
).
35.
Q.
Li
,
X.
Chen
,
G.
Wang
, and
Y.
Liu
, “
A dynamic version of the improved delayed detached-eddy simulation based on the differential Reynolds-stress model
,”
Phys. Fluids
34
(
11
),
115112
(
2022
).
36.
A.
Posa
, “
End effects in the wake of a hydrofoil working downstream of a propeller
,”
Phys. Fluids
35
(
4
),
045122
(
2023
).
37.
J.
Lin
,
H. D.
Yao
,
C.
Wang
,
Y.
Su
, and
C.
Yang
, “
Hydrodynamic performance of a rim-driven thruster improved with gap geometry adjustment
,”
Eng. Appl. Comp. Fluid
17
(
1
),
2183902
(
2023
).
38.
Z.
Yang
,
M.
Lu
, and
S.
Wang
, “
A robust solver for incompressible high-Reynolds-number two-fluid flows with high density contrast
,”
J. Comput. Phys.
441
,
110474
(
2021
).
39.
X.
Zhang
,
G.
He
,
S.
Wang
, and
X.
Zhang
, “
Passive hovering of a flexible Λ-flyer in a vertically oscillating airflow
,”
J. Fluid Mech.
878
,
113
146
(
2019
).
40.
W.
Tong
,
Y.
Yang
, and
S.
Wang
, “
Estimating thrust from shedding vortex surfaces in the wake of a flapping plate
,”
J. Fluid Mech.
920
,
A10
(
2021
).
41.
H.
Guo
,
J.
Hu
,
C.
Guo
,
W.
Zhang
, and
J.
Lin
, “
Numerical simulation of the dynamic stall of a freely rotating hydrofoil
,”
Phys. Fluids
32
(
9
),
095113
(
2020
).
42.
W.
Luo
,
C.
Ma
,
D.
Jiang
,
T.
Zhang
, and
T.
Wu
, “
The hydrodynamic interaction between an AUV and submarine during the recovery process
,”
J. Mar. Sci. Eng.
11
(
9
),
1789
(
2023
).
43.
A.
Posa
, “
Tip vortices shed by a hydrofoil in the wake of a marine propeller
,”
Phys. Fluids
34
(
12
),
125134
(
2022
).
44.
A.
Posa
, “
Analysis of momentum recovery within the near wake of a cross-flow turbine using large eddy simulation
,”
Comput. Fluids
231
,
105178
(
2021
).
45.
A.
Vela-Martín
, “
Subgrid-scale models of isotropic turbulence need not produce energy backscatter
,”
J. Fluid Mech.
937
,
A14
(
2022
).
46.
I.
Rodriguez
,
O.
Lehmkuhl
,
U.
Piomelli
,
J.
Chiva
,
R.
Borrell
, and
A.
Oliva
, “
LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical Reynolds numbers
,”
Flow Turbul. Combust.
99
,
729
763
(
2017
).
47.
A.
Carchen
,
S.
Turkmen
,
B.
Piaggio
,
W.
Shi
,
N.
Sasaki
, and
M.
Atlar
, “
Investigation of the manoeuvrability characteristics of a Gate Rudder system using numerical, experimental, and full-scale techniques
,”
Appl. Ocean Res.
106
,
102419
(
2021
).
48.
C.
Pilloton
,
P. N.
Sun
,
X.
Zhang
, and
A.
Colagrossi
, “
Volume conservation issue within SPH models for long-time simulations of violent free-surface flows
,”
Comput. Method. Appl. Mech. Eng.
419
,
116640
(
2024
).
49.
J.
Lin
,
H. D.
Yao
,
Y.
Han
,
Y.
Su
, and
C.
Zhang
, “
Shape optimization and hydrodynamic simulation of a Magnus anti-rolling device based on fully parametric modeling
,”
Phys. Fluids
35
(
5
),
055136
(
2023
).
50.
S.
Park
,
G.
Oh
,
S. H.
Rhee
,
B. Y.
Koo
, and
H.
Lee
, “
Full scale wake prediction of an energy saving device by using computational fluid dynamics
,”
Ocean Eng.
101
,
254
263
(
2015
).
You do not currently have access to this content.