The present study investigates the aerodynamic characteristics of a square cylinder subjected to transverse oscillating flows. The inflow oscillating frequencies range from 0.25 to 2.00 times the natural Karman vortex shedding frequency. The inflow oscillating intensities are within 5%–20%. Flow resonance between the inflow oscillation and Karman vortex shedding is identified by lift force spectra and verified by dynamic mode decomposition of velocity fields. The range of inflow frequencies conducive to flow resonance is centered around the natural Karman vortex shedding frequency and widens as the inflow fluctuating intensity increases, reaching a span of 0.5 to 1.5 times the natural Karman vortex shedding frequency at the intensity of 20%. The fluctuating lift force coefficients exhibit significant enhancement within the central region of the resonance frequency range, contrasting with lower values observed at the boundaries of this range (similar to non-resonance cases). The enhancement is attributed to intensified shear-layer flapping motion, which is quantitively estimated by the velocities at leading edges. In non-resonance cases and resonance cases with lower inflow frequencies, the root mean square pressure coefficients increase at the center of the leeward wall, resulting in a more uniform distribution of base pressures. Conversely, in resonance cases with higher inflow frequencies, the root mean square pressure coefficients exhibit a sharp decrease from the trailing edge to the center of the leeward wall. This phenomenon coincides with an expanded vertical separation between the Karman vortices of opposite directions in the wake region.

1.
Afgan
,
I.
,
Benhamadouche
,
S.
,
Han
,
X.
,
Sagaut
,
P.
, and
Laurence
,
D.
, “
Flow over a flat plate with uniform inlet and incident coherent gusts
,”
J. Fluid Mech.
720
,
457
485
(
2013
).
2.
Alemi
,
M.
,
Pêgo
,
J. P.
, and
Maia
,
R.
, “
Numerical investigation of the flow behavior around a single cylinder using large eddy simulation model
,”
Ocean Eng.
145
,
464
478
(
2017
).
3.
Bearman
,
P. W.
, and
Obasaju
,
E. D.
, “
An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders
,”
J. Fluid Mech.
119
,
297
321
(
1982
).
4.
Bruno
,
L.
,
Salvetti
,
M. V.
, and
Ricciardelli
,
F.
, “
Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity
,”
J. Wind Eng. Ind. Aerodyn.
126
,
87
106
(
2014
).
5.
Cao
,
Y.
, and
Tamura
,
T.
, “
Large-eddy simulations of flow past a square cylinder using structured and unstructured grids
,”
Comput. Fluids
137
,
36
54
(
2016
).
6.
Cao
,
Y.
,
Tamura
,
T.
, and
Kawai
,
H.
, “
Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder
,”
Comput. Fluids
196
,
104320
(
2020
).
7.
Chaplin
,
J. R.
, “
Flow-induced forces and wake dynamics of cylindrical bodies
,” Ph.D. thesis (
University of Bristol
,
1970
).
8.
Chen
,
C. C.
,
Fang
,
F. M.
,
Li
,
Y. C.
,
Huang
,
L. M.
, and
Chung
,
C. Y.
, “
Fluid forces on a square cylinder in oscillating flows with non-zero-mean velocities
,”
Int. J. Numer. Methods Fluids
60
(
1
),
79
93
(
2009
).
9.
Chen
,
Y.
,
Djidjeli
,
K.
, and
Xie
,
Z. T.
, “
Large eddy simulation of flow past stationary and oscillating square cylinders
,”
J. Fluids Struct.
97
,
103107
(
2020
).
10.
Daniels
,
S. J.
,
Castro
,
I. P.
, and
Xie
,
Z. T.
, “
Peak loading and surface pressure fluctuations of a tall model building
,”
J. Wind Eng. Ind. Aerodyn.
120
(
2013
),
19
28
(
2013
).
11.
Darwish
,
M.
, and
Moukalled
,
F.
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®
(
Springer
,
2016
).
12.
Dong
,
H.
,
Chen
,
L.
,
Du
,
X.
,
Fang
,
L.
, and
Jin
,
X.
, “
Effects of corner chamfers on the extreme pressures on a square cylinder at incidence to a uniform flow
,”
Comput. Fluids
244
,
105539
(
2022
).
13.
Du
,
X. Q.
,
Chen
,
R. Y.
,
Dong
,
H. T.
,
Ma
,
W. Y.
,
Xu
,
H. L.
, and
Zhao
,
Y. F.
, “
Aerodynamic characteristics of two closely spaced square cylinders in different arrangements
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104462
(
2021
).
14.
Feshalami
,
B. F.
,
He
,
S.
,
Scarano
,
F.
,
Gan
,
L.
, and
Morton
,
C.
, “
A review of experiments on stationary bluff body wakes
,”
Phys. Fluids
34
(
1
),
011301
(
2022
).
15.
Haritos
,
N.
, “
Introduction to the analysis and design of offshore structures–An overview
,”
Electron. J. Struct. Eng.
7
(
1
),
55
65
(
2007
).
16.
Jang
,
H. K.
,
Ozdemir
,
C. E.
,
Liang
,
J. H.
, and
Tyagi
,
M.
, “
Oscillatory flow around a vertical wall-mounted cylinder: Dynamic mode decomposition
,”
Phys. Fluids
33
(
2
),
025113
(
2021
).
17.
Ji
,
B.
,
Lei
,
W.
, and
Xiong
,
Q.
, “
An inflow turbulence generation method for large eddy simulation and its application on a standard high-rise building
,”
J. Wind Eng. Ind. Aerodyn.
226
,
105048
(
2022
).
18.
Konstantinidis
,
E.
, and
Balabani
,
S.
, “
Flow structure in the locked-on wake of a circular cylinder in pulsating flow: Effect of forcing amplitude
,”
Int. J. Heat Fluid Flow
29
(
6
),
1567
1576
(
2008
).
19.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
, “
The effect of flow perturbations on the near wake characteristics of a circular cylinder
,”
J. Fluids Struct.
18
(
3–4
),
367
386
(
2003
).
20.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
, “
The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations
,”
J. Fluid Mech.
543
(
1
),
45
55
(
2005
).
21.
Konstantinidis
,
E.
, and
Liang
,
C.
, “
Dynamic response of a turbulent cylinder wake to sinusoidal inflow perturbations across the vortex lock-on range
,”
Phys. Fluids
23
(
7
),
075102
(
2011
).
22.
Lee
,
B. E.
, “
The effect of turbulence on the surface pressure field of a square prism
,”
J. Fluid Mech.
69
,
263
282
(
1975
).
23.
Li
,
C. Y.
,
Chen
,
Z.
,
Zhang
,
X.
,
Tse
,
T. K. T.
, and
Lin
,
C.
, “
Koopman analysis by the dynamic mode decomposition in wind engineering
,”
J. Wind Eng. Ind. Aerodyn.
232
,
105295
(
2023a
).
24.
Li
,
H.
,
Zhang
,
L.
,
Wu
,
B.
, and
Xiao
,
Z.
, “
Effects of streamwise sinusoidal flow on the aerodynamic characteristics of a box girder
,”
Appl. Sci.
12
(
11
),
5341
(
2022
).
25.
Li
,
M.
,
Li
,
Q. S.
, and
Shi
,
H. Y.
, “
Aerodynamic pressures on a 5:1 rectangular cylinder in sinusoidal streamwise oscillatory flows with non-zero mean velocities
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104440
(
2021a
).
26.
Li
,
M.
,
Li
,
Q. S.
, and
Shi
,
H. Y.
, “
Effect of sinusoidal vertical gust on the pressure distributions on and flow structures around a rectangular cylinder
,”
Exp. Fluids
62
(
7
),
148
(
2021b
).
27.
Li
,
M.
,
Li
,
Q. S.
,
Shi
,
H. Y.
, and
Li
,
M. S.
, “
Large-scale sinusoidal gust effect on aerodynamic pressures and forces on a square cylinder
,”
J. Fluids Struct.
120
,
103917
(
2023b
).
28.
Li
,
S.
,
Li
,
X.
,
Li
,
J.
,
Su
,
Y.
, and
Wu
,
B.
, “
Measurements of the unsteady lift force on a 5:1 rectangular cylinder based on active-passive hybrid wind tunnel tests
,”
Measurement
213
,
112674
(
2023c
).
29.
Li
,
W.
,
Patruno
,
L.
,
Niu
,
H.
,
de Miranda
,
S.
, and
Hua
,
X.
, “
Identification of complex admittance functions using 2D-URANS models: Inflow generation and validation on rectangular cylinders
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104435
(
2021c
).
30.
Luo
,
S. C.
,
Yazdani
,
M. G.
,
Chew
,
Y. T.
, and
Lee
,
T. S.
, “
Effects of incidence and afterbody shape on flow past bluff cylinders
,”
J. Wind Eng. Ind. Aerodyn.
53
,
375
399
(
1994
).
31.
Ma
,
R.
,
Yang
,
Y.
,
Li
,
M.
, and
Li
,
Q.
, “
The unsteady lift of an oscillating airfoil encountering a sinusoidal streamwise gust
,”
J. Fluid Mech.
908
,
A22
(
2020
).
32.
Ma
,
R. W.
,
Zhou
,
Q.
,
Wang
,
P. Y.
,
Yang
,
Y.
,
Li
,
M. S.
, and
Cao
,
S. Y.
, “
Effects of sinusoidal streamwise gust on the vortex-induced force on an oscillating 5:1 rectangular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104642
(
2021
).
33.
Ma
,
T. T.
,
Zhao
,
L.
,
Cao
,
S. Y.
,
Ge
,
Y. J.
, and
Miyagi
,
H.
, “
Investigations of aerodynamic effects on streamlined box girder using two-dimensional actively-controlled oncoming flow
,”
J. Wind Eng. Ind. Aerodyn.
122
,
118
129
(
2013
).
34.
Minguez
,
M.
,
Brun
,
C.
,
Pasquetti
,
R.
, and
Serre
,
E.
, “
Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder
,”
Int. J. Heat Fluid Flow
32
(
3
),
558
566
(
2011
).
35.
Namura
,
T.
,
Suzuki
,
Y.
, and
Uemura
,
M.
, “
Aerodynamic forces on a square cylinder in oscillating flow with mean velocity
,”
J. Wind Eng. Ind. Aerodyn.
91
,
199
208
(
2003
).
36.
Oka
,
S.
, and
Ishihara
,
T.
, “
Numerical study of aerodynamic characteristics of a square prism in a uniform flow
,”
J. Wind Eng. Ind. Aerodyn.
97
(
11–12
),
548
559
(
2009
).
37.
Potsis
,
T.
,
Tominaga
,
Y.
, and
Stathopoulos
,
T.
, “
Computational wind engineering: 30 years of research progress in building structures and environment
,”
J. Wind Eng. Ind. Aerodyn.
234
,
105346
(
2023
).
38.
Rodi
,
W.
,
Ferziger
,
J. H.
,
Breuer
,
M.
, and
Pourquie
,
M.
, “
Status of large eddy simulation: Results of a workshop
,”
J. Fluids Eng.
119
,
248
262
(
1997
).
39.
Sarpkaya
,
T.
, “
Experiments on the stability of sinusoidal flow over a circular cylinder
,”
J. Fluid Mech.
457
,
157
180
(
2002
).
40.
Sarpkaya
,
T.
, “
Structures of separation on a circular cylinder in periodic flow
,”
J. Fluid Mech.
567
,
281
297
(
2006
).
41.
Schijve
,
J.
, “
Fatigue of structures and materials in the 20th century and the state of the art
,”
Int. J. Fatigue
25
(
8
),
679
702
(
2003
).
42.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
43.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
44.
Thordal
,
M. S.
,
Bennetsen
,
J. C.
, and
Koss
,
H. H. H.
, “
Review for practical application of CFD for the determination of wind load on high-rise buildings
,”
J. Wind Eng. Ind. Aerodyn.
186
,
155
168
(
2019
).
45.
Trias
,
F. X.
,
Gorobets
,
A.
, and
Oliva
,
A.
, “
Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study
,”
Comput. Fluids
123
,
87
98
(
2015
).
46.
Van Driest
,
E. R.
, “
On turbulent flow near a wall
,”
J. Aeronaut. Sci.
23
(
11
),
1007
1011
(
1956
).
47.
Voke
,
P. R.
, “
Flow past a square cylinder: Test case LES2
,” in
Direct and Large-Eddy Simulation II: Proceedings of the ERCOFTAC Workshop Held in Grenoble
, France, 16–19 September 1996 (
Springer
,
1997
), pp.
355
373
.
48.
Wei
,
N. J.
,
Kissing
,
J.
,
Wester
,
T. T. B.
,
Wegt
,
S.
,
Schiffmann
,
K.
,
Jakirlic
,
S.
,
Holling
,
M.
,
Peinke
,
J.
, and
Tropea
,
C.
, “
Insights into the periodic gust response of airfoils
,”
J. Fluid Mech.
876
,
237
263
(
2019
).
49.
White
,
A. S.
, and
Tiew
,
C. T.
, “
The effect of sinusoidal vertical gusts on the subcritical galloping of a rectangular cylinder
,”
Proc. -Inst. Civ. Eng.
79
,
391
400
(
1985
).
50.
Williamson
,
C. H. K.
, “
Sinusoidal flow relative to circular cylinders
,”
J. Fluid Mech.
155
,
141
174
(
1985
).
51.
Wu
,
B.
,
Li
,
S.
,
Cao
,
S.
,
Yang
,
Q.
, and
Zhang
,
L.
, “
Numerical investigation of the separated and reattaching flow over a 5:1 rectangular cylinder in streamwise sinusoidal flow
,”
J. Wind Eng. Ind. Aerodyn.
198
,
104120
(
2020a
).
52.
Wu
,
B.
,
Li
,
S. P.
,
Li
,
K.
,
Yang
,
Q. S.
,
Zhang
,
L. L.
, and
Qian
,
G. W.
, “
Large-eddy simulation of the near wake of a 5:1 rectangular cylinder in oscillating flows at Re = 670
,”
J. Wind Eng. Ind. Aerodyn.
196
,
104050
(
2020b
).
53.
Wu
,
B.
,
Li
,
S.
,
Zhang
,
L.
, and
Li
,
K.
, “
Experimental determination of the two-dimensional aerodynamic admittances of a 5:1 rectangular cylinder in streamwise sinusoidal flows
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104525
(
2021
).
54.
Wu
,
B.
,
Zhou
,
J. T.
,
Xin
,
J. Z.
,
Zhang
,
H.
,
Zhang
,
L. L.
, and
Yang
,
X. Y.
, “
Aerodynamic forces on a bluff cylinder in sinusoidal streamwise winds with different angles of attack
,”
Buildings
12
(
7
),
1033
(
2022
).
55.
Wu
,
Z.
, “
Rotor power performance and flow physics in lateral sinusoidal gusts
,”
Energy
176
,
917
928
(
2019
).
56.
Yang
,
Q.
,
Chen
,
F.
,
Tamura
,
Y.
,
Li
,
T.
, and
Yan
,
B.
, “
Fluid-structure interaction behaviors of tension membrane roofs by fully-coupled numerical simulation
,”
J. Wind Eng. Ind. Aerodyn.
244
,
105609
(
2024
).
57.
Yang
,
Y.
,
Li
,
M.
,
Ma
,
C.
, and
Li
,
S.
, “
Experimental investigation on the unsteady lift of an airfoil in a sinusoidal streamwise gust
,”
Phys. Fluids
29
(
5
),
051703
(
2017
).
58.
Zeng
,
K.
,
Li
,
Z.
,
Rana
,
Z. A.
, and
Jenkins
,
K. W.
, “
Implicit large eddy simulations of turbulent flow around a square cylinder at Re = 22,000
,”
Comput. Fluids
226
,
105000
(
2021
).
59.
Zhang
,
Y.
,
Cao
,
S.
,
Cao
,
J.
, and
Wang
,
J.
, “
Effects of turbulence intensity and integral length scale on the surface pressure on a rectangular 5:1 cylinder
,”
J. Wind Eng. Ind. Aerodyn.
236
,
105406
(
2023
).
60.
Zhao
,
C. Y.
,
Wang
,
H. F.
,
Zeng
,
L. W.
,
Alam
,
M. M.
, and
Zhao
,
X. Y.
, “
Effects of oncoming flow turbulence on the near wake and forces of a 3D square cylinder
,”
J. Wind Eng. Ind. Aerodyn.
214
,
104674
(
2021
).
61.
Zou
,
P.
,
Cao
,
S.
, and
Cao
,
J.
, “
Spanwise correlation and coherent structures of separated flow around rectangular 5:1 cylinder
,”
J. Wind Eng. Ind. Aerodyn.
231
,
105211
(
2022
).
You do not currently have access to this content.