Collective movements of bacteria exhibit a remarkable pattern of turbulence-like vortices, in which the Richardson cascade plays an important role. In this work, we examine the energy and enstrophy cascades and their associated lognormal statistics using experimental velocity field data. The coherent structure observed on a large scale is due to the presence of the inverse energy cascade, while the kinetic energy is dissipated at all scales, since these active movements occur below the fluid viscosity scale. The forward enstrophy cascade occurs with injection at all scales and may be represented by other nonlinear interactions that are not captured by the existing experimental data. Furthermore, the lognormal statistics for both energy dissipation and enstrophy fields is verified in accordance with the Kolmogorov 1962 refined theory of turbulence. Their scaling exponents can be well described by the lognormal formula with intermittency parameters comparable with those of the three-dimensional hydrodynamic turbulence. The joint analysis of the multifractal measures of the energy dissipation rate and enstrophy follows an ellipse model from the lognormal statistics. Our results confirm the coexistence of the inverse energy cascade and the intermittency correction of the velocity scaling in this active fluid system. An inverse energy cascade diagram below the fluid viscosity is summarized to describe the observed two-dimensional bacterial turbulence. Our work provides an example of an active-flow model benchmark.

1.
L.
Richardson
,
Weather Prediction by Numerical Process
(
Cambridge University Press
,
Cambridge, England
,
1922
).
2.
A. N.
Kolmogorov
, “
Local structure of turbulence in an incompressible fluid at very high Reynolds numbers
,”
Proc. R. Soc. London A
434
,
9
13
(
1991
).
3.
U.
Frisch
,
Turbulence: The Legacy of an Kolmogorov
(
Cambridge University Press
,
1995
).
4.
R.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
1423
(
1967
).
5.
G. K.
Batchelor
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids
12
,
II-233
(
1969
).
6.
R. M. B.
Young
and
P. L.
Read
, “
Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer
,”
Nat. Phys.
13
,
1135
1140
(
2017
).
7.
X.
Jian
,
W.
Zhang
,
Q.
Deng
, and
Y.
Huang
, “
Turbulent lithosphere deformation in the Tibetan Plateau
,”
Phys. Rev. E
99
,
062122
(
2019
).
8.
P. Y.
Chou
, “
On an extension of Reynolds' method of finding apparent stress and the nature of turbulence
,”
Chin. J. Phys.
4
,
1
33
(
1940
).
9.
P. Y.
Chou
, “
On velocity correlations and the solutions of the equations of turbulent fluctuation
,”
Q. Appl. Math.
3
,
38
54
(
1945
).
10.
L.
Landau
and
E.
Lifshits
,
Fluid Mechanics
(
Pergamon
,
London
,
1987
).
11.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
12.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2004
).
13.
S. A.
Thorpe
,
The Turbulent Ocean
(
Cambridge University Press
,
2005
).
14.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2017
).
15.
S.
Lovejoy
,
Weather, Macroweather, and the Climate: Our Random yet Predictable Atmosphere
(
Oxford University Press
,
2019
).
16.
F. G.
Schmitt
and
Y.
Huang
,
Stochastic Analysis of Scaling Time Series: From Turbulence Theory to Applications
(
Cambridge University Press
,
2016
).
17.
J. L.
Lumley
, “
Some comments on turbulence
,”
Phys. Fluids
4
,
203
211
(
1992
).
18.
A.
Kolmogorov
, “
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
,
82
85
(
1962
).
19.
R.
Benzi
,
G.
Paladin
,
A.
Vulpiani
, and
G.
Parisi
, “
On the multifractal nature of fully developed turbulence and chaotic systems
,”
J. Phys. A
17
,
3521
3531
(
1984
).
20.
G.
Parisi
and
U.
Frisch
, “
On the singularity spectrum of fully developed turbulence
,” in
Turbulence and Predictability in Geophysical Fluid Dynamics, Proceedings of the International Summer School in Physics Enrico Fermi
(
North-Holland
,
Amsterdam
,
1985
),
84
87
.
21.
C.
Meneveau
and
K.
Sreenivasan
, “
The multifractal nature of turbulent energy dissipation
,”
J. Fluid Mech.
224
,
429
484
(
1991
).
22.
G.
Stolovitzky
and
K.
Sreenivasan
, “
Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes
,”
Rev. Mod. Phys.
66
,
229
240
(
1994
).
23.
S.
Chen
,
K.
Sreenivasan
,
M.
Nelkin
, and
N.
Cao
, “
Refined similarity hypothesis for transverse structure functions in fluid turbulence
,”
Phys. Rev. Lett.
79
,
2253
2256
(
1997
).
24.
S.
Chen
,
K. R.
Sreenivasan
, and
M.
Nelkin
, “
Inertial range scalings of dissipation and enstrophy in isotropic turbulence
,”
Phys. Rev. Lett.
79
,
1253
(
1997
).
25.
R.
Benzi
,
L.
Biferale
,
E.
Calzavarini
,
D.
Lohse
, and
F.
Toschi
, “
Velocity-gradient statistics along particle trajectories in turbulent flows: The refined similarity hypothesis in the Lagrangian frame
,”
Phys. Rev. E
80
,
066318
(
2009
).
26.
H.
Yu
and
C.
Meneveau
, “
Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows
,”
Phys. Rev. Lett.
104
,
084502
(
2010
).
27.
Y.
Huang
and
F. G.
Schmitt
, “
Lagrangian cascade in three-dimensional homogeneous and isotropic turbulence
,”
J. Fluid Mech.
741
,
R2
(
2014
).
28.
A.
Tsinober
,
An Informal Conceptual Introduction to Turbulence
(
Springer Verlag
,
2009
).
29.
A.
Alexakis
and
L.
Biferale
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767–769
,
1
101
(
2018
).
30.
Y.
Zhou
, “
Turbulence theories and statistical closure approaches
,”
Phys. Rep.
935
,
1
117
(
2021
).
31.
R.
Benzi
and
F.
Toschi
, “
Lectures on turbulence
,”
Phys. Rep.
1021
,
1
106
(
2023
).
32.
G.
Boffetta
and
R.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
33.
R.
Kraichnan
and
D.
Montgomery
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
,
547
(
1980
).
34.
J.
Paret
,
M.
Jullien
, and
P.
Tabeling
, “
Vorticity statistics in the two-dimensional enstrophy cascade
,”
Phys. Rev. Lett.
83
,
3418
3421
(
1999
).
35.
S.
Chen
,
R.
Ecke
,
G.
Eyink
,
X.
Wang
, and
Z.
Xiao
, “
Physical mechanism of the two-dimensional enstrophy cascade
,”
Phys. Rev. Lett.
91
,
214501
(
2003
).
36.
S.
Chen
,
R.
Ecke
,
G.
Eyink
,
M.
Rivera
,
M.
Wan
, and
Z.
Xiao
, “
Physical mechanism of the two-dimensional inverse energy cascade
,”
Phys. Rev. Lett.
96
,
084502
(
2006
).
37.
A.
Alexakis
and
C.
Doering
, “
Energy and enstrophy dissipation in steady state 2D turbulence
,”
Phys. Lett. A
359
,
652
657
(
2006
).
38.
G.
Boffetta
, “
Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence
,”
J. Fluid Mech.
589
,
253
260
(
2007
).
39.
H.
Xia
,
H.
Punzmann
,
G.
Falkovich
, and
M.
Shats
, “
Turbulence-condensate interaction in two dimensions
,”
Phys. Rev. Lett.
101
,
194504
(
2008
).
40.
G.
Boffetta
and
S.
Musacchio
, “
Evidence for the double cascade scenario in two-dimensional turbulence
,”
Phys. Rev. E
82
,
016307
(
2010
).
41.
G.
Falkovich
and
V.
Lebedev
, “
Vorticity statistics in the direct cascade of two-dimensional turbulence
,”
Phys. Rev. E
83
,
045301
(
2011
).
42.
H.
Tan
,
Y.
Huang
, and
J.-P.
Meng
, “
Hilbert statistics of vorticity scaling in two-dimensional turbulence
,”
Phys. Fluids
26
,
015106
(
2014
).
43.
L.
Fang
and
N. T.
Ouellette
, “
Advection and the efficiency of spectral energy transfer in two-dimensional turbulence
,”
Phys. Rev. Lett.
117
,
104501
(
2016
).
44.
G.
Gauthier
,
M. T.
Reeves
,
X.
Yu
,
A. S.
Bradley
,
M. A.
Baker
,
T. A.
Bell
,
H.
Rubinsztein-Dunlop
,
M. J.
Davis
, and
T. W.
Neely
, “
Giant vortex clusters in a two-dimensional quantum fluid
,”
Science
364
,
1264
1267
(
2019
).
45.
S. P.
Johnstone
,
A. J.
Groszek
,
P. T.
Starkey
,
C. J.
Billington
,
T. P.
Simula
, and
K.
Helmerson
, “
Evolution of large-scale flow from turbulence in a two-dimensional superfluid
,”
Science
364
,
1267
1271
(
2019
).
46.
G.
Falkovich
and
V.
Lebedev
, “
Universal direct cascade in two-dimensional turbulence
,”
Phys. Rev. E
50
,
3883
(
1994
).
47.
Y.
Tsang
,
E.
Ott
,
T.
Antonsen
, Jr.
, and
P.
Guzdar
, “
Intermittency in two-dimensional turbulence with drag
,”
Phys. Rev. E
71
,
066313
(
2005
).
48.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
,
53
55
(
2000
).
49.
A.
Groisman
and
V.
Steinberg
, “
Efficient mixing at low Reynolds numbers using polymer additives
,”
Nature
410
,
905
908
(
2001
).
50.
V.
Steinberg
, “
Elastic turbulence: An experimental view on inertialess random flow
,”
Annu. Rev. Fluid Mech.
53
,
27
58
(
2021
).
51.
H.-P.
Zhang
,
A.
Beér
,
E.-L.
Florin
, and
H. L.
Swinney
, “
Collective motion and density fluctuations in bacterial colonies
,”
Proc. Natl. Acad. Sci.
107
,
13626
13630
(
2010
).
52.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
R. E.
Goldstein
,
H.
Löwen
, and
J. M.
Yeomans
, “
Meso-scale turbulence in living fluids
,”
Proc. Natl. Acad. Sci.
109
,
14308
14313
(
2012
).
53.
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H. H.
Wensink
,
M.
Bär
, and
R. E.
Goldstein
, “
Fluid dynamics of bacterial turbulence
,”
Phys. Rev. Lett.
110
,
228102
(
2013
).
54.
C.-M.
Koch
and
M.
Wilczek
, “
Role of advective inertia in active nematic turbulence
,”
Phys. Rev. Lett.
127
,
268005
(
2021
).
55.
V.
Bratanov
,
F.
Jenko
, and
E.
Frey
, “
New class of turbulence in active fluids
,”
Proc. Natl. Acad. Sci.
112
,
15048
15053
(
2015
).
56.
K.-T.
Wu
,
J. B.
Hishamunda
,
D. T.
Chen
,
S. J.
DeCamp
,
Y.-W.
Chang
,
A.
Fernández-Nieves
,
S.
Fraden
, and
Z.
Dogic
, “
Transition from turbulent to coherent flows in confined three-dimensional active fluids
,”
Science
355
,
eaal1979
(
2017
).
57.
Y.
Huang
,
W.
Ou
,
M.
Chen
,
Z.
Lu
,
N.
Jiang
,
Y.
Liu
,
X.
Qiu
, and
Q.
Zhou
, “
Taylor dispersion in two-dimensional bacterial turbulence
,”
Phys. Fluids
29
,
051901
(
2017
).
58.
C.
Chen
,
S.
Liu
,
X.-Q.
Shi
,
H.
Chaté
, and
Y.
Wu
, “
Weak synchronization and large-scale collective oscillation in dense bacterial suspensions
,”
Nature
542
,
210
214
(
2017
).
59.
Y.
Peng
,
Z.
Liu
, and
X.
Cheng
, “
Imaging the emergence of bacterial turbulence: Phase diagram and transition kinetics
,”
Sci. Adv.
7
,
eabd1240
(
2021
).
60.
A.
Doostmohammadi
,
T. N.
Shendruk
,
K.
Thijssen
, and
J. M.
Yeomans
, “
Onset of meso-scale turbulence in active nematics
,”
Nat. Commun.
8
,
15326
(
2017
).
61.
L.
Wang
and
Y.
Huang
, “
Intrinsic flow structure and multifractality in two-dimensional bacterial turbulence
,”
Phys. Rev. E
95
,
052215
(
2017
).
62.
M.
Linkmann
,
G.
Boffetta
,
M. C.
Marchetti
, and
B.
Eckhardt
, “
Phase transition to large scale coherent structures in two-dimensional active matter turbulence
,”
Phys. Rev. Lett.
122
,
214503
(
2019
).
63.
The classical definition of the Kolmogorov scale or viscosity scale is written as η = ( ν 3 / ϵ ) 1 / 4, where ϵ is the energy dissipation rate. A typical value of η in the ocean is around 0.2 2 mm. In a turbulent pipe flow with a high Reynolds number with velocity, 1.8 ms 1, η is found to be 25 μ m. In the current system, the Reynolds number is nearly zero, that is, Re O ( 10 5 ). Therefore, it is reasonable to assume that the viscosity scale is higher than 50 μ m.
64.
X.-L.
Wu
and
A.
Libchaber
, “
Particle diffusion in a quasi-two-dimensional bacterial bath
,”
Phys. Rev. Lett.
84
,
3017
(
2000
).
65.
C.
Dombrowski
,
L.
Cisneros
,
S.
Chatkaew
,
R. E.
Goldstein
, and
J. O.
Kessler
, “
Self-concentration and large-scale coherence in bacterial dynamics
,”
Phys. Rev. Lett.
93
,
098103
(
2004
).
66.
T.
Ishikawa
,
N.
Yoshida
,
H.
Ueno
,
M.
Wiedeman
,
Y.
Imai
, and
T.
Yamaguchi
, “
Energy transport in a concentrated suspension of bacteria
,”
Phys. Rev. Lett.
107
,
028102
(
2011
).
67.
A.
Sokolov
and
I. S.
Aranson
, “
Physical properties of collective motion in suspensions of bacteria
,”
Phys. Rev. Lett.
109
,
248109
(
2012
).
68.
G.
Kokot
,
S.
Das
,
R. G.
Winkler
,
G.
Gompper
,
I. S.
Aranson
, and
A.
Snezhko
, “
Active turbulence in a gas of self-assembled spinners
,”
Proc. Natl. Acad. Sci.
114
,
12870
12875
(
2017
).
69.
P.
Guillamat
,
J.
Ignés-Mullol
, and
F.
Sagués
, “
Taming active turbulence with patterned soft interfaces
,”
Nat. Commun.
8
,
564
(
2017
).
70.
B.
Martínez-Prat
,
J.
Ignés-Mullol
,
J.
Casademunt
, and
F.
Sagués
, “
Selection mechanism at the onset of active turbulence
,”
Nat. Phys.
15
,
362
366
(
2019
).
71.
S.
Čopar
,
J.
Aplinc
,
Ž.
Kos
,
S.
Žumer
, and
M.
Ravnik
, “
Topology of three-dimensional active nematic turbulence confined to droplets
,”
Phys. Rev. X
9
,
031051
(
2019
).
72.
A.
Opathalage
,
M. M.
Norton
,
M. P.
Juniper
,
B.
Langeslay
,
S. A.
Aghvami
,
S.
Fraden
, and
Z.
Dogic
, “
Self-organized dynamics and the transition to turbulence of confined active nematics
,”
Proc. Natl. Acad. Sci.
116
,
4788
4797
(
2019
).
73.
M. R.
Shaebani
,
A.
Wysocki
,
R. G.
Winkler
,
G.
Gompper
, and
H.
Rieger
, “
Computational models for active matter
,”
Nat. Rev. Phys.
2
,
181
199
(
2020
).
74.
M.
Bär
,
R.
Großmann
,
S.
Heidenreich
, and
F.
Peruani
, “
Self-propelled rods: Insights and perspectives for active matter
,”
Annu. Rev. Condens. Matter Phys.
11
,
441
466
(
2020
).
75.
R.
Alert
,
J.-F.
Joanny
, and
J.
Casademunt
, “
Universal scaling of active nematic turbulence
,”
Nat. Phys.
16
,
682
688
(
2020
).
76.
R.
Alert
,
J.
Casademunt
, and
J.-F.
Joanny
, “
Active turbulence
,”
Annu. Rev. Condens. Matter Phys.
13
,
143
170
(
2022
).
77.
I. S.
Aranson
, “
Bacterial active matter
,”
Rep. Prog. Phys.
85
,
076601
(
2022
).
78.
J.
Hardoüin
,
C.
Doré
,
J.
Laurent
,
T.
Lopez-Leon
,
J.
Ignés-Mullol
, and
F.
Sagués
, “
Active boundary layers in confined active nematics
,”
Nat. Commun.
13
,
6675
(
2022
).
79.
C.
Rorai
,
F.
Toschi
, and
I.
Pagonabarraga
, “
Coexistence of active and hydrodynamic turbulence in two-dimensional active nematics
,”
Phys. Rev. Lett.
129
,
218001
(
2022
).
80.
R.
Adkins
,
I.
Kolvin
,
Z.
You
,
S.
Witthaus
,
M. C.
Marchetti
, and
Z.
Dogic
, “
Dynamics of active liquid interfaces
,”
Science
377
,
768
772
(
2022
).
81.
M.
Cavaiola
, “
Swarm of slender pusher and puller swimmers at finite Reynolds numbers
,”
Phys. Fluids
34
,
027113
(
2022
).
82.
L.
Puggioni
,
G.
Boffetta
, and
S.
Musacchio
, “
Giant vortex dynamics in confined bacterial turbulence
,”
Phys. Rev. E
106
,
055103
(
2022
).
83.
R. J.
Henshaw
,
O. G.
Martin
, and
J. S.
Guasto
, “
Dynamic mode structure of active turbulence
,”
Phys. Rev. Fluids
8
,
023101
(
2023
).
84.
S.
Mukherjee
,
R. K.
Singh
,
M.
James
, and
S. S.
Ray
, “
Intermittency, fluctuations and maximal chaos in an emergent universal state of active turbulence
,”
Nat. Phys.
19
,
891
897
(
2023
).
85.
K.
Avila
,
D.
Moxey
,
A.
De Lozar
,
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
The onset of turbulence in pipe flow
,”
Science
333
,
192
196
(
2011
).
86.
J.
Słomka
and
J.
Dunkel
, “
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids
,”
Proc. Natl. Acad. Sci.
114
,
2119
2124
(
2017
).
87.
L. N.
Carenza
,
L.
Biferale
, and
G.
Gonnella
, “
Cascade or not cascade? Energy transfer and elastic effects in active nematics
,”
Europhys. Lett.
132
,
44003
(
2020
).
88.
Y.
Huang
,
F.
Schmitt
,
Z.
Lu
,
P.
Fougairolles
,
Y.
Gagne
, and
Y.
Liu
, “
Second-order structure function in fully developed turbulence
,”
Phys. Rev. E
82
,
026319
(
2010
).
89.
X.
Qiu
,
L.
Ding
,
Y.
Huang
,
M.
Chen
,
Z.
Lu
,
Y.
Liu
, and
Q.
Zhou
, “
Intermittency measurement in two-dimensional bacterial turbulence
,”
Phys. Rev. E
93
,
062226
(
2016
).
90.
R. T.
Cerbus
and
P.
Chakraborty
, “
The third-order structure function in two dimensions: The Rashomon effect
,”
Phys. Fluids
29
,
111110
(
2017
).
91.
Y.-B.
Zhang
,
E.
Bodenschatz
,
H.
Xu
, and
H.-D.
Xi
, “
Experimental observation of the elastic range scaling in turbulent flow with polymer additives
,”
Sci. Adv.
7
,
eabd3525
(
2021
).
92.
L.
Biferale
,
S.
Musacchio
, and
F.
Toschi
, “
Inverse energy cascade in three-dimensional isotropic turbulence
,”
Phys. Rev. Lett.
108
,
164501
(
2012
).
93.
A.
Pouquet
,
R.
Marino
,
P. D.
Mininni
, and
D.
Rosenberg
, “
Dual constant-flux energy cascades to both large scales and small scales
,”
Phys. Fluids
29
,
111108
(
2017
).
94.
M.
Barjona
and
C. B.
da Silva
, “
Kolmogorov's Lagrangian similarity law revisited
,”
Phys. Fluids
29
,
105106
(
2017
).
95.
M.
Fathali
and
S.
Khoei
, “
Spectral energy transfer in a viscoelastic homogeneous isotropic turbulence
,”
Phys. Fluids
31
,
095105
(
2019
).
96.
R.
Ni
,
G.
Voth
, and
N.
Ouellette
, “
Extracting turbulent spectral transfer from under-resolved velocity field
,”
Phys. Fluids
26
,
105107
(
2014
).
97.
Q.
Zhou
,
Y.-X.
Huang
,
Z.-M.
Lu
,
Y.-L.
Liu
, and
R.
Ni
, “
Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh-Taylor turbulence
,”
J. Fluid Mech.
786
,
294
308
(
2016
).
98.
L.
Fang
and
N. T.
Ouellette
, “
Multiple stages of decay in two-dimensional turbulence
,”
Phys. Fluids
29
,
111105
(
2017
).
99.
A.
Leonard
, “
Energy cascade in large-eddy simulations of turbulent fluid flows
,”
Adv. Geophys.
18
,
237
248
(
1975
).
100.
G. L.
Eyink
, “
Local energy flux and the refined similarity hypothesis
,”
J. Stat. Phys.
78
,
335
351
(
1995
).
101.
G.
Eyink
and
H.
Aluie
, “
Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining
,”
Phys. Fluids
21
,
115107
(
2009
).
102.
H.
Aluie
,
M.
Hecht
, and
G. K.
Vallis
, “
Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach
,”
J. Phys. Oceanogr.
48
,
225
244
(
2018
).
103.
S.
Dong
,
Y.
Huang
,
X.
Yuan
, and
A.
Lozano-Durán
, “
The coherent structure of the kinetic energy transfer in shear turbulence
,”
J. Fluid Mech.
892
,
A22
(
2020
).
104.
N.
Loose
,
S.
Bachman
,
I.
Grooms
, and
M.
Jansen
, “
Diagnosing scale-dependent energy cycles in a high-resolution isopycnal ocean model
,”
J. Phys. Oceanogr.
53
,
157
176
(
2023
).
105.
D.
Zhang
,
J.
Song
,
Y.
Gao
,
Y.
Peng
,
J.
Hu
,
F. G.
Schmitt
, and
Y.
Huang
, “
Scale-to-scale energy flux in the oceanic global circulation models
,”
Front. Mar. Sci.
11
,
1307751
(
2024
).
106.
E.
Ching
, “
Probabilities for temperature differences in Rayleigh-Bénard convection
,”
Phys. Rev. A
44
,
3622
(
1991
).
107.
Y.
Huang
,
F.
Schmitt
,
Q.
Zhou
,
X.
Qiu
,
X.
Shang
,
Z.
Lu
, and
Y.
Liu
, “
Scaling of maximum probability density functions of velocity and temperature increments in turbulent systems
,”
Phys. Fluids
23
,
125101
(
2011
).
108.
C.
Meneveau
,
K.
Sreenivasan
,
P.
Kailasnath
, and
M.
Fan
, “
Joint multifractal measures: Theory and applications to turbulence
,”
Phys. Rev. A
41
,
894
(
1990
).
109.
M.
Nelkin
, “
Universality and scaling in fully developed turbulence
,”
Adv. Phys.
43
,
143
181
(
1994
).
110.
M.
Nelkin
, “
Enstrophy and dissipation must have the same scaling exponent in the high Reynolds number limit of fluid turbulence
,”
Phys. Fluids
11
,
2202
2204
(
1999
).
111.
H.
Yao
,
P.
Yeung
,
T.
Zaki
, and
C.
Meneveau
, “
Forward and inverse energy cascade in fluid turbulence adhere to Kolmogorov's refined similarity hypothesis
,”
Phys. Rev. Lett.
132
,
164001
(
2024
).
112.
G. I.
Taylor
, “
Eddy motion in the atmosphere
,”
Philos. Trans. R Soc. London A
215
,
1
26
(
1915
).
113.
G. I.
Taylor
, “
On the dissipation of eddies
,”
Meteorology, Oceanography and Turbulent Flow
(
Cambridge University Press
,
1918
), pp.
96
101
.
114.
Y.-L.
Chou
,
Statistical Analysis: With Business and Economic Applications
(
Holt, Rinehart and Winston
,
1963
).
115.
Y.
Huang
,
L.
Wang
,
F. G.
Schmitt
,
X.
Zheng
,
N.
Jiang
,
Y.
Liu
et al, “
Extremal-point density of scaling processes: From fractional Brownian motion to turbulence in one dimension
,”
Phys. Rev. E
96
,
012215
(
2017
).
116.
K.
Sreenivasan
and
P.
Kailasnath
, “
An update on the intermittency exponent in turbulence
,”
Phys. Fluids
5
,
512
514
(
1993
).
117.
P.
Yeung
,
D.
Donzis
, and
K.
Sreenivasan
, “
Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers
,”
J. Fluid Mech.
700
,
5
15
(
2012
).
118.
K. P.
Iyer
,
J.
Schumacher
,
K. R.
Sreenivasan
, and
P.
Yeung
, “
Scaling of locally averaged energy dissipation and enstrophy density in isotropic turbulence
,”
New J. Phys.
21
,
033016
(
2019
).
119.
G.
Stolovitzky
,
P.
Kailasnath
, and
K.
Sreenivasan
, “
Kolmogorov's refined similarity hypotheses
,”
Phys. Rev. Lett.
69
,
1178
(
1992
).
120.
D.
Schertzer
and
S.
Lovejoy
, “
Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes
,”
J. Geophys. Res.
92
,
9693
9714
, https://doi.org/10.1029/JD092iD08p09693 (
1987
).
121.
Z. S.
She
and
E.
Lévêque
, “
Universal scaling laws in fully developed turbulence
,”
Phys. Rev. Lett.
72
,
336
339
(
1994
).
122.
B.
Dubrulle
, “
Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance
,”
Phys. Rev. Lett.
73
,
959
962
(
1994
).
123.
G.
Consolini
and
P.
De Michelis
, “
A joint multifractal approach to solar wind turbulence
,”
Fractal Fract.
7
,
748
(
2023
).
124.
S.
Qin
,
Y.
Yang
,
Y.
Huang
,
X.
Mei
,
L.
Wang
, and
S.
Liao
, “
Is a direct numerical simulation (DNS) of Navier–Stokes equations with small enough grid spacing and time-step definitely reliable/correct?
,”
J. Ocean Eng. Sci.
9
,
293
310
(
2024
).
125.
R.
Kraichnan
, “
On Kolmogorov's inertial-range theories
,”
J. Fluid Mech.
62
,
305
330
(
1974
).
126.
A.
Monin
and
A.
Yaglom
,
Statistical Fluid Mechanics Vol. II
(
MIT Press Cambridge
,
MA
,
1971
).
127.
The dissipation spectrum E ϵ ( k ) is not the Fourier power spectrum of the energy dissipation rate ϵ. It comes from the mathematical relation ϵ = E ( k ) k 2 d k, where E(k) is the kinetic energy spectrum.
128.
A.
Sokolov
and
I. S.
Aranson
, “
Reduction of viscosity in suspension of swimming bacteria
,”
Phys. Rev. Lett.
103
,
148101
(
2009
).
129.
S.
Rafaï
,
L.
Jibuti
, and
P.
Peyla
, “
Effective viscosity of microswimmer suspensions
,”
Phys. Rev. Lett.
104
,
098102
(
2010
).
130.
H. M.
López
,
J.
Gachelin
,
C.
Douarche
,
H.
Auradou
, and
E.
Clément
, “
Turning bacteria suspensions into superfluids
,”
Phys. Rev. Lett.
115
,
028301
(
2015
).
131.
D.
Buaria
,
E.
Bodenschatz
, and
A.
Pumir
, “
Vortex stretching and enstrophy production in high Reynolds number turbulence
,”
Phys. Rev. Fluids
5
,
104602
(
2020
).
132.
A. N.
Kolmogorov
,
Selected Works of A.N. Kolmogorov: Volume I: Mathematics and Mechanics
(
Springer Science & Business Media
,
1991
), p.
410
.
133.
A.
Rohatgi
, “
Webplotdigitizer: Version 4.6
,” https://automeris.io/ (
2022
).
134.
University of Cambridge
(
2012
). “
Department of Applied Mathematics and Theoretical Physics
,” University of Cambridge. http://damtp.cam.ac.uk
135.
Y.
Huang
(
2024
). “A package of Python codes.” Xiamen University. https://github.com/lanlankai
You do not currently have access to this content.