Complex turbulent flows with large-scale instabilities and coherent structures pose challenges to both traditional and data-driven Reynolds-averaged Navier–Stokes methods. The difficulty arises due to the strong flow-dependence (the non-universality) of the unsteady coherent structures, which translates to poor generalizability of data-driven models. It is well-accepted that the dynamically active coherent structures reside in the larger scales, while the smaller scales of turbulence exhibit more “universal” (generalizable) characteristics. In such flows, it is prudent to separate the treatment of the flow-dependent aspects from the universal features of the turbulence field. Scale resolving simulations (SRS), such as the partially averaged Navier–Stokes (PANS) method, seek to resolve the flow-dependent coherent scales of motion and model only the universal stochastic features. Such an approach requires the development of scale-sensitive turbulence closures that not only allow for generalizability but also exhibit appropriate dependence on the cut-off length scale. The objectives of this work are to (i) establish the physical characteristics of cut-off dependent closures in stochastic turbulence; (ii) develop a procedure for subfilter stress neural network development at different cut-offs using high-fidelity data; and (iii) examine the optimal approach for the incorporation of the unsteady features in the network for consistent a posteriori use. The scale-dependent closure physics analysis is performed in the context of the PANS approach, but the technique can be extended to other SRS methods. The benchmark “flow past periodic hills” case is considered for proof of concept. The appropriate self-similarity parameters for incorporating unsteady features are identified. The study demonstrates that when the subfilter data are suitably normalized, the machine learning based SRS model is indeed insensitive to the cut-off scale.

1.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Proc. R. Soc. London Ser. A: Math. Phys. Sci.
434
(
1890
),
9
13
(
1991
).
2.
A. N.
Kolmogorov
, “
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
(
1
),
82
85
(
1962
).
3.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
(
1
),
011702
(
2012
).
4.
J. P.
Slotnick
,
A.
Khodadoust
,
J.
Alonso
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D. J.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,”
Technical Report
,
2014
.
5.
Y.
Zhiyin
, “
Large-eddy simulation: Past, present and the future
,”
Chin. J. Aeronaut.
28
(
1
),
11
24
(
2015
).
6.
S.
Girimaji
and
K.
Abdol-Hamid
, “
Partially-averaged Navier Stokes model for turbulence: Implementation and validation
,” AIAA Paper No. 2005-502,
2005
.
7.
S. S.
Girimaji
, “
Partially-averaged Navier–Stokes model for turbulence: A Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method
,”
J. Appl. Mech.
73
(
3
),
413
421
(
2006
).
8.
S. S.
Girimaji
,
E.
Jeong
, and
R.
Srinivasan
, “
Partially averaged Navier–stokes method for turbulence: Fixed point analysis and comparison with unsteady partially averaged Navier–stokes
,”
J. Appl. Mech.
73
(
3
),
422
(
2006
).
9.
K.
Duraisamy
,
Z. J.
Zhang
, and
A. P.
Singh
, “
New approaches in turbulence and transition modeling using data-driven techniques
,” AIAA Paper No. 2015-1284,
2015
.
10.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
(
7
),
2215
2227
(
2017
).
11.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
12.
Z.
Zhang
,
X.-d.
Song
,
S.-r.
Ye
,
Y.-w.
Wang
,
C.-g.
Huang
,
Y.-r.
An
, and
Y.-s.
Chen
, “
Application of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data
,”
J. Hydrodyn.
31
(
1
),
58
65
(
2019
).
13.
C.
Sotgiu
,
B.
Weigand
,
K.
Semmler
, and
P.
Wellinger
, “
Towards a general data-driven explicit algebraic Reynolds stress prediction framework
,”
Int. J. Heat Fluid Flow
79
,
108454
(
2019
).
14.
N.
Geneva
and
N.
Zabaras
, “
Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
,”
J. Comput. Phys.
383
,
125
147
(
2019
).
15.
R.
Fang
,
D.
Sondak
,
P.
Protopapas
, and
S.
Succi
, “
Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow
,”
J. Turbul.
21
(
9–10
),
525
543
(
2020
).
16.
C.
Jiang
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
A novel algebraic stress model with machine-learning-assisted parameterization
,”
Energies
13
(
1
),
258
(
2020
).
17.
Y.
Yin
,
P.
Yang
,
Y.
Zhang
,
H.
Chen
, and
S.
Fu
, “
Feature selection and processing of turbulence modeling based on an artificial neural network
,”
Phys. Fluids
32
(
10
),
105117
(
2020
).
18.
S.
Taghizadeh
,
F. D.
Witherden
, and
S. S.
Girimaji
, “
Turbulence closure modeling with data-driven techniques: Physical compatibility and consistency considerations
,”
New J. Phys.
22
(
9
),
093023
(
2020
).
19.
S.
Taghizadeh
,
F. D.
Witherden
,
Y. A.
Hassan
, and
S. S.
Girimaji
, “
Turbulence closure modeling with data-driven techniques: Investigation of generalizable deep neural networks
,”
Phys. Fluids
33
(
11
),
115132
(
2021
).
20.
S.
Taghizadeh
, “
Toward turbulence closure modeling with data–driven techniques
,” Ph.D. thesis,
Texas A&M University
,
2023
.
21.
C.
Jiang
,
R.
Vinuesa
,
R.
Chen
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
An interpretable framework of data-driven turbulence modeling using deep neural networks
,”
Phys. Fluids
33
(
5
),
055133
(
2021
).
22.
X.-H.
Zhou
,
J.
Han
, and
H.
Xiao
, “
Learning nonlocal constitutive models with neural networks
,”
Comput. Methods Appl. Mech. Eng.
384
,
113927
(
2021
).
23.
X.-H.
Zhou
,
J.
Han
, and
H.
Xiao
, “
Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary grids
,”
Comput. Methods Appl. Mech. Eng.
388
,
114211
(
2022
).
24.
P. S.
Volpiani
,
M.
Meyer
,
L.
Franceschini
,
J.
Dandois
,
F.
Renac
,
E.
Martin
,
O.
Marquet
, and
D.
Sipp
, “
Machine learning-augmented turbulence modeling for rans simulations of massively separated flows
,”
Phys. Rev. Fluids
6
(
6
),
064607
(
2021
).
25.
R.
Maulik
,
H.
Sharma
,
S.
Patel
,
B.
Lusch
, and
E.
Jennings
, “
A turbulent eddy-viscosity surrogate modeling framework for Reynolds-averaged Navier–Stokes simulations
,”
Comput. Fluids
227
,
104777
(
2021
).
26.
S.
Berrone
and
D.
Oberto
, “
An invariances-preserving vector basis neural network for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the Reynolds stress tensor
,”
Phys. Fluids
34
(
9
),
095136
(
2022
).
27.
C.
Xie
,
X.
Xiong
, and
J.
Wang
, “
Artificial neural network approach for turbulence models: A local framework
,”
Phys. Rev. Fluids
6
(
8
),
084612
(
2021
).
28.
L.
Zhu
,
W.
Zhang
,
J.
Kou
, and
Y.
Liu
, “
Machine learning methods for turbulence modeling in subsonic flows around airfoils
,”
Phys. Fluids
31
(
1
),
015105
(
2019
).
29.
E. L.
Peters
,
R.
Balin
,
K. E.
Jansen
,
A.
Doostan
, and
J. A.
Evans
, “
S-frame discrepancy correction models for data-informed Reynolds stress closure
,”
J. Comput. Phys.
448
,
110717
(
2021
).
30.
J.-L.
Wu
,
J.-X.
Wang
,
H.
Xiao
, and
J.
Ling
, “
A priori assessment of prediction confidence for data-driven turbulence modeling
,”
Flow. Turbul. Combust.
99
(
1
),
25
46
(
2017
).
31.
J.-X.
Wang
,
J.-L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
(
3
),
034603
(
2017
).
32.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
(
7
),
074602
(
2018
).
33.
M. L.
Kaandorp
and
R. P.
Dwight
, “
Data-driven modelling of the Reynolds stress tensor using random forests with invariance
,”
Comput. Fluids
202
,
104497
(
2020
).
34.
M.
Yang
and
Z.
Xiao
, “
Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework
,”
Phys. Fluids
32
(
6
),
064101
(
2020
).
35.
J.
Weatheritt
and
R.
Sandberg
, “
The development of algebraic stress models using a novel evolutionary algorithm
,”
Int. J. Heat Fluid Flow
68
,
298
318
(
2017
).
36.
J.
Weatheritt
,
R.
Pichler
,
R. D.
Sandberg
,
G.
Laskowski
, and
V.
Michelassi
, “
Machine learning for turbulence model development using a high-fidelity HPT cascade simulation
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2017
).
37.
H. D.
Akolekar
,
J.
Weatheritt
,
N.
Hutchins
,
R. D.
Sandberg
,
G.
Laskowski
, and
V.
Michelassi
, “
Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in LPTS
,” in
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
(
American Society of Mechanical Engineers Digital Collection
,
2018
).
38.
Y.
Zhao
,
H. D.
Akolekar
,
J.
Weatheritt
,
V.
Michelassi
, and
R. D.
Sandberg
, “
RANS turbulence model development using CFD-driven machine learning
,”
J. Comput. Phys.
411
,
109413
(
2020
).
39.
C.
Lav
,
R. D.
Sandberg
, and
J.
Philip
, “
A framework to develop data-driven turbulence models for flows with organised unsteadiness
,”
J. Comput. Phys.
383
,
148
165
(
2019
).
40.
F.
Waschkowski
,
Y.
Zhao
,
R.
Sandberg
, and
J.
Klewicki
, “
Multi-objective CFD-driven development of coupled turbulence closure models
,”
J. Comput. Phys.
452
,
110922
(
2022
).
41.
M.
Schmelzer
,
R. P.
Dwight
, and
P.
Cinnella
, “
Discovery of algebraic Reynolds-stress models using sparse symbolic regression
,”
Flow. Turbul. Combust.
104
(
2
),
579
603
(
2020
).
42.
J. P.
Huijing
,
R. P.
Dwight
, and
M.
Schmelzer
, “
Data-driven rans closures for three-dimensional flows around bluff bodies
,”
Comput. Fluids
225
,
104997
(
2021
).
43.
S.
Beetham
and
J.
Capecelatro
, “
Formulating turbulence closures using sparse regression with embedded form invariance
,”
Phys. Rev. Fluids
5
(
8
),
084611
(
2020
).
44.
Y.
Zhang
,
R. P.
Dwight
,
M.
Schmelzer
,
J. F.
Gómez
,
Z-h
Han
, and
S.
Hickel
, “
Customized data-driven rans closures for bi-fidelity LES–RANS optimization
,”
J. Comput. Phys.
432
,
110153
(
2021
).
45.
I. B. H.
Saïdi
,
M.
Schmelzer
,
P.
Cinnella
, and
F.
Grasso
, “
CFD-driven symbolic identification of algebraic Reynolds-stress models
,”
J. Comput. Phys.
457
,
111037
(
2022
).
46.
S.
Cherroud
,
X.
Merle
,
P.
Cinnella
, and
X.
Gloerfelt
, “
Sparse Bayesian learning of explicit algebraic Reynolds-stress models for turbulent separated flows
,”
Int. J. Heat Fluid Flow
98
,
109047
(
2022
).
47.
J.
Steiner
,
R. P.
Dwight
, and
A.
Viré
, “
Data-driven rans closures for wind turbine wakes under neutral conditions
,”
Comput. Fluids
233
,
105213
(
2022
).
48.
S.
Beetham
,
R. O.
Fox
, and
J.
Capecelatro
, “
Sparse identification of multiphase turbulence closures for coupled fluid–particle flows
,”
J. Fluid Mech.
914
,
A11
(
2021
).
49.
Y.
Bin
,
X.
Hu
,
J.
Li
,
S. J.
Grauer
, and
X. I.
Yang
, “
Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models
,”
Theor. Appl. Mech. Lett.
14
,
100503
(
2024
).
50.
P. E.
Chen
,
Y.
Bin
,
X. I.
Yang
,
Y.
Shi
,
M.
Abkar
, and
G. I.
Park
, “
A priori screening of data-enabled turbulence models
,”
Phys. Rev. Fluids
8
(
12
),
124606
(
2023
).
51.
A.
Agrawal
and
P.-S.
Koutsourelakis
, “
A probabilistic, data-driven closure model for rans simulations with aleatoric, model uncertainty
,”
J. Comput. Phys.
508
,
112982
(
2024
).
52.
O.
Bidar
,
S.
Anderson
, and
N.
Qin
, “
Sensor placement for data assimilation of turbulence models using eigenspace perturbations
,”
Phys. Fluids
36
(
1
),
015144
(
2024
).
53.
H.
Li
,
S.
Yakovenko
,
V.
Ivashchenko
,
A.
Lukyanov
,
R.
Mullyadzhanov
, and
M.
Tokarev
, “
Data-driven turbulence modeling for fluid flow and heat transfer in peripheral subchannels of a rod bundle
,”
Phys. Fluids
36
(
2
),
025141
(
2024
).
54.
S.
Lyu
,
J.
Kou
, and
N. A.
Adams
, “
Machine-learning-augmented domain decomposition method for near-wall turbulence modeling
,”
Phys. Rev. Fluids
9
(
4
),
044603
(
2024
).
55.
X.
Fu
,
S.
Fu
,
C.
Liu
,
M.
Zhang
, and
Q.
Hu
, “
Data-driven approach for modeling Reynolds stress tensor with invariance preservation
,”
Comput. Fluids
274
,
106215
(
2024
).
56.
X.
Xu
,
A.
Haghiri
,
R. D.
Sandberg
,
T.
Oda
, and
K.
Tanimoto
, “
Data-driven turbulence modelling of inherently unsteady flow in stratified water storage tanks
,”
Int. J. Heat Mass Transfer
219
,
124854
(
2024
).
57.
M. S.
Macedo
,
M. A.
Cruz
,
B. P.
Brener
, and
R. L.
Thompson
, “
A data-driven turbulence modeling for the Reynolds stress tensor transport equation
,”
Numer. Methods Fluids
96
,
1194
(
2024
).
58.
B. P.
Brener
,
M. A.
Cruz
,
M. S.
Macedo
, and
R. L.
Thompson
, “
A highly accurate strategy for data-driven turbulence modeling
,”
Comput. Appl. Math.
43
(
1
),
59
(
2024
).
59.
A.
Subel
,
Y.
Guan
,
A.
Chattopadhyay
, and
P.
Hassanzadeh
, “
Explaining the physics of transfer learning in data-driven turbulence modeling
,”
PNAS Nexus
2
(
3
),
pgad015
(
2023
).
60.
P. S.
Volpiani
, “
Are random forests better suited than neural networks to augment RANS turbulence models?
,”
Int. J. Heat Fluid Flow
107
,
109348
(
2024
).
61.
A. S.
Cato
,
P. S.
Volpiani
,
V.
Mons
,
O.
Marquet
, and
D.
Sipp
, “
Comparison of different data-assimilation approaches to augment RANS turbulence models
,”
Comput. Fluids
266
,
106054
(
2023
).
62.
C. D.
Ellis
and
H.
Xia
, “
Data-driven turbulence anisotropy in film and effusion cooling flows
,”
Phys. Fluids
35
(
10
),
105114
(
2023
).
63.
W.
Liu
,
J.
Fang
,
S.
Rolfo
,
C.
Moulinec
, and
D. R.
Emerson
, “
On the improvement of the extrapolation capability of an iterative machine-learning based RANS framework
,”
Comput. Fluids
256
,
105864
(
2023
).
64.
J.
Cai
,
P.-E.
Angeli
,
J.-M.
Martinez
,
G.
Damblin
, and
D.
Lucor
, “
Revisiting tensor basis neural network for Reynolds stress modeling: Application to plane channel and square duct flows
,”
Comput. Fluids
275
,
106246
(
2024
).
65.
J. N.
Kutz
, “
Deep learning in fluid dynamics
,”
J. Fluid Mech.
814
,
1
4
(
2017
).
66.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
67.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
68.
A.
Beck
and
M.
Kurz
, “
A perspective on machine learning methods in turbulence modeling
,”
GAMM-Mitteilungen
44
(
1
),
e202100002
(
2021
).
69.
K.
Duraisamy
, “
Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence
,”
Phys. Rev. Fluids
6
(
5
),
050504
(
2021
).
70.
B.
Sanderse
,
P.
Stinis
,
R.
Maulik
, and
S. E.
Ahmed
, “
Scientific machine learning for closure models in multiscale problems: A review
,” arXiv:2403.02913 (
2024
).
71.
P.
Cinnella
, “
Data-driven turbulence modeling
,” arXiv:2404.09074 (
2024
).
72.
C.
Rumsey
and
G.
Coleman
, “
Nasa symposium on turbulence modeling: Roadblocks, and the potential for machine learning
,” Technical Report,
2022
.
73.
S. S.
Girimaji
, “
Turbulence closure modeling with machine learning approaches: A perspective
,” arXiv:2312.14902 (
2023
).
74.
Z.
Li
,
W.
Peng
,
Z.
Yuan
, and
J.
Wang
, “
Long-term predictions of turbulence by implicit u-net enhanced Fourier neural operator
,”
Phys. Fluids
35
(
7
),
075145
(
2023
).
75.
G.
Tabe Jamaat
and
Y.
Hattori
, “
A priori assessment of nonlocal data-driven wall modeling in large eddy simulation
,”
Phys. Fluids
35
(
5
),
055117
(
2023
).
76.
K.
Srinivasan
,
M. D.
Chekroun
, and
J. C.
McWilliams
, “
Turbulence closure with small, local neural networks: Forced two-dimensional and β-plane flows
,”
J. Adv. Model. Earth Syst.
16
(
4
),
e2023MS003795
(
2024
).
77.
M.
Kim
,
J.
Park
, and
H.
Choi
, “
Large eddy simulation of flow over a circular cylinder with a neural-network-based subgrid-scale model
,”
J. Fluid Mech.
984
,
A6
(
2024
).
78.
A.
Wu
and
S. K.
Lele
, “
A subgrid stress model with tensor basis convolutional neural networks: Analysis and integration
,” AIAA Paper No. 2024-1575,
2024
.
79.
R.
Bose
and
A. M.
Roy
, “
Invariance embedded physics-infused deep neural network-based sub-grid scale models for turbulent flows
,”
Eng. Appl. Artif. Intell.
128
,
107483
(
2024
).
80.
A.
Prakash
,
K. E.
Jansen
, and
J. A.
Evans
, “
Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation
,”
Comput. Methods Appl. Mech. Eng.
422
,
116807
(
2024
).
81.
S. D.
Agdestein
and
B.
Sanderse
, “
Discretize first, filter next: Learning divergence-consistent closure models for large-eddy simulation
,” arXiv:2403.18088 (
2024
).
82.
T.
van Gastelen
,
W.
Edeling
, and
B.
Sanderse
, “
Energy-conserving neural network for turbulence closure modeling
,”
J. Comput. Phys.
508
,
113003
(
2024
).
83.
L.
Liu
,
C.
Lav
, and
R. D.
Sandberg
, “
A-priori evaluation of data-driven models for large-eddy simulations in Rayleigh–Bénard convection
,”
Int. J. Heat Fluid Flow
107
,
109377
(
2024
).
84.
Y.
Wang
,
Z.
Yuan
, and
J.
Wang
, “
Ensemble data assimilation-based mixed subgrid-scale model for large-eddy simulations
,”
Phys. Fluids
35
(
8
),
085107
(
2023
).
85.
S.
Pawar
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
Frame invariant neural network closures for Kraichnan turbulence
,”
Phys. A
609
,
128327
(
2023
).
86.
M.
Kurz
,
P.
Offenhäuser
, and
A.
Beck
, “
Deep reinforcement learning for turbulence modeling in large eddy simulations
,”
Int. J. Heat Fluid Flow
99
,
109094
(
2023
).
87.
D.
Dupuy
,
N.
Odier
, and
C.
Lapeyre
, “
Data-driven wall modeling for turbulent separated flows
,”
J. Comput. Phys.
487
,
112173
(
2023
).
88.
Y.
Guan
,
A.
Subel
,
A.
Chattopadhyay
, and
P.
Hassanzadeh
, “
Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate LES
,”
Phys. D
443
,
133568
(
2023
).
89.
M.
Gamahara
and
Y.
Hattori
, “
Searching for turbulence models by artificial neural network
,”
Phys. Rev. Fluids
2
(
5
),
054604
(
2017
).
90.
Z.
Wang
,
K.
Luo
,
D.
Li
,
J.
Tan
, and
J.
Fan
, “
Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
,”
Phys. Fluids
30
(
12
),
125101
(
2018
).
91.
C.
Xie
,
K.
Li
,
C.
Ma
, and
J.
Wang
, “
Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network
,”
Phys. Rev. Fluids
4
(
10
),
104605
(
2019
).
92.
A.
Subel
,
A.
Chattopadhyay
,
Y.
Guan
, and
P.
Hassanzadeh
, “
Data-driven subgrid-scale modeling of forced burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning
,”
Phys. Fluids
33
(
3
),
031702
(
2021
).
93.
Y.
Guan
,
A.
Chattopadhyay
,
A.
Subel
, and
P.
Hassanzadeh
, “
Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning
,”
J. Comput. Phys.
458
,
111090
(
2022
).
94.
J.
Park
and
H.
Choi
, “
Toward neural-network-based large eddy simulation: Application to turbulent channel flow
,”
J. Fluid Mech.
914
,
A16
(
2021
).
95.
R.
Maulik
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
Subgrid modelling for two-dimensional turbulence using neural networks
,”
J. Fluid Mech.
858
,
122
144
(
2019
).
96.
U.
Piomelli
,
W. H.
Cabot
,
P.
Moin
, and
S.
Lee
, “
Subgrid-scale backscatter in turbulent and transitional flows
,”
Phys. Fluids A
3
(
7
),
1766
1771
(
1991
).
97.
D.
Krueger
,
E.
Caballero
,
J.-H.
Jacobsen
,
A.
Zhang
,
J.
Binas
,
D.
Zhang
,
R. L.
Priol
, and
A.
Courville
, “
Out-of-distribution generalization via risk extrapolation (REx)
,” in
International Conference on Machine Learning
(
PMLR
,
2021
), pp.
5815
5826
.
98.
J.
Berner
,
P.
Grohs
, and
F.
Voigtlaender
, “
Training RELU networks to high uniform accuracy is intractable
,” arXiv:2205.13531 (
2022
).
99.
H.
Frezat
,
G.
Balarac
,
J.
Le Sommer
,
R.
Fablet
, and
R.
Lguensat
, “
Physical invariance in neural networks for subgrid-scale scalar flux modeling
,”
Phys. Rev. Fluids
6
(
2
),
024607
(
2021
).
100.
A.
Prakash
,
K. E.
Jansen
, and
J. A.
Evans
, “
Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation
,”
Comput. Methods Appl. Mech. Eng.
399
,
115457
(
2022
).
101.
A.
Beck
,
D.
Flad
, and
C.-D.
Munz
, “
Deep neural networks for data-driven LES closure models
,”
J. Comput. Phys.
398
,
108910
(
2019
).
102.
Z.
Zhou
,
G.
He
,
S.
Wang
, and
G.
Jin
, “
Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network
,”
Comput. Fluids
195
,
104319
(
2019
).
103.
R.
Maulik
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
,”
Phys. Fluids
30
(
12
),
125109
(
2018
).
104.
C.
Xie
,
J.
Wang
, and
E.
Weinan
, “
Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
,”
Phys. Rev. Fluids
5
(
5
),
054606
(
2020
).
105.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
(
7
),
1760
1765
(
1991
).
106.
S. S.
Girimaji
and
S.
Wallin
, “
Closure modeling in bridging regions of variable-resolution (VR) turbulence computations
,”
J. Turbul.
14
(
1
),
72
98
(
2013
).
107.
M.
Germano
, “
Turbulence: The filtering approach
,”
J. Fluid Mech.
238
,
325
336
(
1992
).
108.
S.
Lakshmipathy
and
S.
Girimaji
, “
Partially-averaged Navier–stokes method for turbulent flows: k–ω model implementation
,” AIAA Paper No. 2006-119,
2006
.
109.
P.
Tazraei
and
S. S.
Girimaji
, “
Scale-resolving simulations of turbulence: Equilibrium boundary layer analysis leading to near-wall closure modeling
,”
Phys. Rev. Fluids
4
(
10
),
104607
(
2019
).
110.
S.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
(
2
),
331
340
(
1975
).
111.
J.
Fröhlich
,
C. P.
Mellen
,
W.
Rodi
,
L.
Temmerman
, and
M. A.
Leschziner
, “
Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions
,”
J. Fluid Mech.
526
,
19
66
(
2005
).
112.
B.
Chaouat
and
R.
Schiestel
, “
Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method
,”
Comput. Fluids
84
,
279
300
(
2013
).
113.
P.
Razi
,
P.
Tazraei
, and
S.
Girimaji
, “
Partially-averaged Navier–Stokes (PANS) simulations of flow separation over smooth curved surfaces
,”
Int. J. Heat Fluid Flow
66
,
157
171
(
2017
).
114.
V.
Shinde
, “
Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation
,”
Phys. Rev. Fluids
5
(
1
),
014605
(
2020
).
115.
S.
Parneix
,
D.
Laurence
, and
P.
Durbin
, “
A procedure for using DNS databases
,”
J. Fluids Eng.
120
,
40
(
1998
).
116.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
117.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
JMLR Workshop and Conference Proceedings
,
2010
), pp.
249
256
.
118.
F. S.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S. S.
Girimaji
, “
Challenges in scale-resolving simulations of turbulent wake flows with coherent structures
,”
J. Comput. Phys.
363
,
98
115
(
2018
).
119.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
(
1
),
539
575
(
1993
).
120.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
2012
).
121.
M.
Kargar
,
T.
Sardarmehni
, and
X.
Song
, “
Optimal powertrain energy management for autonomous hybrid electric vehicles with flexible driveline power demand using approximate dynamic programming
,”
IEEE Trans. Veh. Technol.
71
(
12
),
12564
12575
(
2022
).
122.
M.
Kargar
and
X.
Song
, “
Optimization of power control for autonomous hybrid electric vehicles with flexible power demand
,” arXiv:2312.07894 (
2023
).
123.
P.
Moin
and
R. D.
Moser
, “
Characteristic-eddy decomposition of turbulence in a channel
,”
J. Fluid Mech.
200
,
471
509
(
1989
).
124.
S. Y.
Motlagh
and
S.
Taghizadeh
, “
POD analysis of low Reynolds turbulent porous channel flow
,”
Int. J. Heat Fluid Flow
61
,
665
676
(
2016
).
125.
S.
Taghizadeh
and
D.
Jarrahbashi
, “
Proper orthogonal decomposition analysis of turbulent cryogenic liquid jet injection under transcritical and supercritical conditions
,”
Atomiz. Spr.
28
(
10
),
875
(
2018
).
126.
S.
Sanghi
and
N.
Aubry
, “
Mode interaction models for near-wall turbulence
,”
J. Fluid Mech.
247
,
455
488
(
1993
).
127.
N.
Aubry
,
P.
Holmes
,
J. L.
Lumley
, and
E.
Stone
, “
The dynamics of coherent structures in the wall region of a turbulent boundary layer
,”
J. Fluid Mech.
192
,
115
173
(
1988
).
128.
P. J.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
,
J. C.
Mattingly
, and
R. W.
Wittenberg
, “
Low-dimensional models of coherent structures in turbulence
,”
Phys. Rep.
287
(
4
),
337
384
(
1997
).
129.
B. R.
Noack
,
K.
Afanasiev
,
M.
Morzyński
,
G.
Tadmor
, and
F.
Thiele
, “
A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
,”
J. Fluid Mech.
497
,
335
363
(
2003
).
130.
C. W.
Rowley
, “
Model reduction for fluids, using balanced proper orthogonal decomposition
,”
Int. J. Bifurcation Chaos
15
(
03
),
997
1013
(
2005
).
131.
Z.
Wang
,
I.
Akhtar
,
J.
Borggaard
, and
T.
Iliescu
, “
Two-level discretizations of nonlinear closure models for proper orthogonal decomposition
,”
J. Comput. Phys.
230
(
1
),
126
146
(
2011
).
132.
Z.
Wang
,
I.
Akhtar
,
J.
Borggaard
, and
T.
Iliescu
, “
Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison
,”
Comput. Methods Appl. Mech. Eng.
237–240
,
10
26
(
2012
).
133.
M.
Kargar
and
X.
Song
, “
Power control optimization for autonomous hybrid electric vehicles with flexible driveline torque demand
,” in
American Control Conference (ACC)
(
IEEE
,
2022
), pp.
2012
2017
.
134.
M.
Kargar
,
C.
Zhang
, and
X.
Song
, “
Integrated optimization of powertrain energy management and vehicle motion control for autonomous hybrid electric vehicles
,”
IEEE Trans. Veh. Technol.
72
,
11147
(
2023
).
You do not currently have access to this content.