Direct numerical simulations are performed to investigate the effect of the yaw angle (α) on the drag-reduction performance by riblets in a turbulent channel flow. The yaw angles of α = 0 ° and 90 ° correspond to the riblets parallel and perpendicular to the free-stream direction, respectively. It is well known that maximum drag reduction occurs at α = 0 °, and the drag-reduction performance by riblets is degraded with increasing α. We obtain the critical yaw angle below which drag reduction can be achieved and investigate the corresponding mechanism. From a parametric study, drag reductions are achieved for α < 20 °. As α increases, the form drag increases more rapidly than the skin-friction drag decreases, resulting in the increase in the total drag. At drag reducing and increasing yaw angles, the mean velocity profiles in wall units shift upward and downward, respectively, and the latter profile suggests that the drag-increasing riblet is similar to a rough surface. With increasing α, the wall-normal and spanwise velocity fluctuations and Reynolds shear stress increase, and stronger near-wall vortices are generated. By applying a scaling analysis to the momentum equation in the riblet-perpendicular direction and the FIK (Fukagata–Iwamoto–Kasagi) identity [Fukagata et al., “Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows,” Phys. Fluids 14, L73–L76 (2002); Peet and Sagaut, “Theoretical prediction of turbulent skin friction on geometrically complex surfaces,” Phys. Fluids 21, 105105 (2009); Bannier et al., “Riblet flow model based on an extended FIK identity,” Flow Turbul. Combust. 95, 351–376 (2015)] to the riblet-parallel direction, the total drag is expressed as a linear function of sin 2 α.

1.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
2.
Y.
Peet
and
P.
Sagaut
, “
Theoretical prediction of turbulent skin friction on geometrically complex surfaces
,”
Phys. Fluids
21
,
105105
(
2009
).
3.
A.
Bannier
,
É.
Garnier
, and
P.
Sagaut
, “
Riblet flow model based on an extended FIK identity
,”
Flow Turbul. Combust.
95
,
351
376
(
2015
).
4.
M. J.
Walsh
and
L. M.
Weinstein
, “
Drag and heat-transfer characteristics of small longitudinally ribbed surfaces
,”
AIAA J.
17
,
770
771
(
1979
).
5.
M. J.
Walsh
, “
Turbulent boundary layer drag reduction using riblets
,” AIAA Paper No. 82-0169,
1982
.
6.
M. J.
Walsh
and
A.
Lindemann
, “
Optimization and application of riblets for turbulent drag reduction
,” AIAA Paper No. 84-0347,
1984
.
7.
A.
Hooshmand
,
R. A.
Youngs
,
J. M.
Wallace
, and
J.-L.
Balint
, “
An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes
,” AIAA Paper No. 83-0230,
1983
.
8.
W. G.
Sawyer
and
K. G.
Winter
, “
An investigation of the effect on turbulent skin friction of surfaces with streamwise grooves
,” in
Turbulent Drag Reduction by Passive Means
(
Royal Aerospace Establishment
,
London
,
1987
), pp.
330
362
.
9.
K.-S.
Choi
, “
Near-wall structure of a turbulent boundary layer with riblets
,”
J. Fluid Mech.
208
,
417
458
(
1989
).
10.
E.
Coustols
, “
Behaviour of internal manipulators - ‘Riblet’ models in subsonic and transonic flows
,” AIAA Paper No. 89-0963,
1989
.
11.
P.
Vukoslavcevic
,
J. M.
Wallace
, and
J.-L.
Balint
, “
Viscous drag reduction using streamwise-aligned riblets
,”
AIAA J.
30
,
1119
1122
(
1992
).
12.
Y.
Suzuki
and
N.
Kasagi
, “
Turbulent drag reduction mechanism above a riblet surface
,”
AIAA J.
32
,
1781
1790
(
1994
).
13.
S.-R.
Park
and
J. M.
Wallace
, “
Flow alteration and drag reduction by riblets in a turbulent boundary layer
,”
AIAA J.
32
,
31
38
(
1994
).
14.
D. W.
Bechert
,
M.
Bruse
,
W.
Hage
,
J. G. T.
Van Der Hoeven
, and
G.
Hoppe
, “
Experiments on drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
87
(
1997
).
15.
S. J.
Lee
and
S. H.
Lee
, “
Flow field analysis of a turbulent boundary layer over a riblet surface
,”
Exp. Fluids
30
,
153
166
(
2001
).
16.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent flow over riblets
,”
J. Fluid Mech.
255
,
503
539
(
1993
).
17.
D. C.
Chu
and
G. E.
Karniadakis
, “
A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces
,”
J. Fluid Mech.
250
,
1
42
(
1993
).
18.
D.
Goldstein
,
R.
Handler
, and
L.
Sirovich
, “
Direct numerical simulation of turbulent flow over a modeled riblet covered surface
,”
J. Fluid Mech.
302
,
333
376
(
1995
).
19.
D. B.
Goldstein
and
T. C.
Tuan
, “
Secondary flow induced by riblets
,”
J. Fluid Mech.
363
,
115
151
(
1998
).
20.
R.
García-Mayoral
and
J.
Jiménez
, “
Hydrodynamic stability and breakdown of the viscous regime over riblets
,”
J. Fluid Mech.
678
,
317
347
(
2011
).
21.
S.
Endrikat
,
D.
Modesti
,
R.
García-Mayoral
,
N.
Hutchins
, and
D.
Chung
, “
Influence of riblet shapes on the occurrence of Kelvin-Helmholtz rollers
,”
J. Fluid Mech.
913
,
A37
(
2021
).
22.
E. V.
Bacher
and
C. R.
Smith
, “
A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications
,” AIAA Paper No. 85-0548,
1985
.
23.
D. W.
Bechert
and
M.
Bartenwerfer
, “
The viscous flow on surfaces with longitudinal ribs
,”
J. Fluid Mech.
206
,
105
129
(
1989
).
24.
P.
Luchini
,
F.
Manzo
, and
A.
Pozzi
, “
Resistance of a grooved surface to parallel flow and cross-flow
,”
J. Fluid Mech.
228
,
87
109
(
1991
).
25.
P. A.
Leitl
,
V.
Stenzel
,
A.
Flanschger
,
H.
Kordy
,
C.
Feichtinger
,
Y.
Kowalik
,
S.
Schreck
, and
D.
Stübing
, “
Riblet surfaces for improvement of efficiency of wind turbines
,” AIAA Paper No. 2020-0308,
2020
.
26.
J. D.
McLean
,
D. N.
George-Falvy
, and
P. P.
Sullivan
, “
Flight-test of turbulent skin-friction reduction by riblets
,” in
International Conference on Turbulent Drag Reduction by Passive Means
(
The Royal Aeronautical Society
,
London
,
1987
), pp.
408
424
.
27.
M. J.
Walsh
,
W. L.
Sellers
, and
C. B.
McGinley
, “
Riblet drag at flight conditions
,”
J. Aircr.
26
,
570
575
(
1989
).
28.
J.
Szodruch
, “
Viscous drag reduction on transport aircraft
,” AIAA Paper No. 91-0685,
1991
.
29.
L. C.
Squire
and
A. M.
Savill
, “
Drag measurements on planar riblet surfaces at high subsonic speeds
,”
Appl. Sci. Res.
46
,
229
243
(
1989
).
30.
L.
Gaudet
, “
Properties of riblets at supersonic speed
,”
Appl. Sci. Res.
46
,
245
254
(
1989
).
31.
G. V.
Enyutin
,
Y. A.
Lashkov
,
N. V.
Samoilova
,
I. V.
Fadeev
, and
E. A.
Shumilkina
, “
Influence of downwash on the aerodynamic efficiency of fine-ribbed surfaces
,”
Fluid Dyn.
26
,
31
35
(
1991
).
32.
W.
Hage
,
D. W.
Bechert
, and
M.
Bruse
, “
Yaw angle effects on optimized riblets
,” in
Proceedings of Aerodynamic Drag Reduction Technologies
, edited by
P.
Thiede
(
Springer
,
Heidelberg, Berlin
,
2001
), pp.
278
285
.
33.
R.
Grüneberger
,
F.
Kramer
,
E.
Wassen
,
W.
Hage
,
R.
Meyer
, and
F.
Thiele
, “
Influence of wave-like riblets on turbulent friction drag
,” in
Nature-Inspired Fluid Mechanics
, edited by
C.
Tropea
and
H.
Bleckmann
(
Springer
,
Berlin, Heidelberg
,
2012
), Vol.
119
, pp.
311
329
.
34.
H. O. G.
Benschop
and
W. P.
Breugem
, “
Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow
,”
J. Turbul.
18
,
717
759
(
2017
).
35.
K.
Okabayashi
, “
Direct numerical simulation for investigation on yaw angle effects on riblets
,”
J. Fluid Sci. Technol.
12
,
JFST0008
(
2017
).
36.
Y.
Zhang
and
Y.
Yin
, “
Study on riblet drag reduction considering the effect of sweep angle
,”
Energies
12
,
3386
(
2019
).
37.
R.
García-Mayoral
and
J.
Jiménez
, “
Drag reduction by riblets
,”
Philos. Trans. A
369
,
1412
1427
(
2011
).
38.
S.
Sundaram
,
P. R.
Viswanath
, and
N.
Subaschandar
, “
Viscous drag reduction using riblets on a swept wing
,”
AIAA J.
37
,
851
856
(
1999
).
39.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
40.
H.
Choi
and
P.
Moin
, “
Effects of the computational time step on numerical solutions of turbulent flow
,”
J. Comput. Phys.
113
,
1
4
(
1994
).
41.
K.
Kim
,
S.-J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
42.
P.
Orlandi
,
S.
Leonardi
, and
R. A.
Antonia
, “
Turbulent channel flow with either transverse or longitudinal roughness elements on one wall
,”
J. Fluid Mech.
561
,
279
305
(
2006
).
43.
P. S.
Jackson
, “
On the displacement height in the logarithmic velocity profile
,”
J. Fluid Mech.
111
,
15
25
(
1981
).
44.
J. I.
Ibrahim
,
G. G.
de Segura
,
D.
Chung
, and
R.
García-Mayoral
, “
The smooth-wall-like behaviour of turbulence over drag-altering surfaces: A unifying virtual-origin framework
,”
J. Fluid Mech.
915
,
A56
(
2021
).
45.
J. L.
Lumley
, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci.
7
,
263
290
(
1973
).
46.
W. J.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids
4
,
1605
1607
(
1992
).
47.
D. T.
Squire
,
C.
Morrill-Winter
,
N.
Hutchins
,
M. P.
Schultz
,
J. C.
Klewicki
, and
I.
Marusic
, “
Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers
,”
J. Fluid Mech.
795
,
210
240
(
2016
).
48.
F. H.
Clauser
, “
Turbulent boundary layers in adverse pressure gradients
,”
J. Aeronaut. Sci.
21
,
91
108
(
1954
).
49.
J.
Nikuradse
,
Strömungsgesetze in rauhen rohren
(
VDI-Forschungsheft 361
,
1933
), [“Laws of flow in rough pipes,” Report No. NACA-TM-1292, 1950].
50.
J.
Jiménez
, “
Turbulent flows over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
196
(
2004
).
51.
M.
Gul
and
B.
Ganapathisubramani
, “
Revisiting rough-wall turbulent boundary layers over sand-grain roughness
,”
J. Fluid Mech.
911
,
A26
(
2021
).
52.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
53.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
54.
A. G.
Kravchenko
,
H.
Choi
, and
P.
Moin
, “
On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers
,”
Phys. Fluids
5
,
3307
3309
(
1993
).
55.
J.
Kim
, “
Physics and control of wall turbulence for drag reduction
,”
Philos. Trans. A
369
,
1396
1411
(
2011
).
You do not currently have access to this content.