In marine environments, tidal currents exhibit periodic changes in both direction and velocity. Consequently, tidal turbines often operate under yawed conditions. While conventional horizontal-axis turbines show decreased performance and undergo periodic load fluctuations due to blade rotation when yawed, research on the effects of yaw on ducted turbines has been sparse, leaving the underlying impact mechanisms poorly understood. This paper presents a three-dimensional hydrodynamic model of a ducted turbine, developed using the computational fluid dynamics method and validated through flume experiments. The hydrodynamic characteristics of the ducted turbine when operating under yawed conditions are analyzed using large eddy simulation. The findings indicate that yaw does not alter the optimal rotational speed of the ducted turbine. The turbine performance remains superior to non-yawed conditions up to a yaw angle of approximately 7°, peaking with a 1% improvement at 5°, but deteriorates beyond this point, declining by 1.5% at a yaw angle of 10°. In addition, yaw causes a deflection in the wake of the ducted turbine. This deflection increases with the yaw angle, reaching its maximum at a yaw angle of 10° with an angle of about 3.4°, before diminishing. The duct structure significantly influences this deflection, while rotor rotation has a minimal impact on wake deflection.

1.
R. H.
Stewart
,
Introduction to Physical Oceanography
(
Robert H. Stewart
,
2008
).
2.
M.
Piano
,
S. P.
Neill
,
M. J.
Lewis
et al, “
Tidal stream resource assessment uncertainty due to flow asymmetry and turbine yaw misalignment
,”
Renewable Energy
114
,
1363
1375
(
2017
).
3.
D.
Zhang
,
X.
Liu
,
M.
Tan
et al, “
Flow field impact assessment of a tidal farm in the Putuo-Hulu Channel
,”
Ocean Eng.
208
,
107359
(
2020
).
4.
B.
Dou
,
M.
Guala
,
L.
Lei
et al, “
Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions
,”
Appl. Energy
242
,
1383
1395
(
2019
).
5.
Y.
Qian
,
Y.
Zhang
,
Y.
Sun
et al, “
Experimental and numerical investigations on the performance and wake characteristics of a tidal turbine under yaw
,”
Ocean Eng.
289
,
116276
(
2023
).
6.
M. G.
Borg
,
Q.
Xiao
,
S.
Allsop
et al, “
A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions
,”
Renewable Energy
193
,
179
194
(
2022
).
7.
Y.
Dong
,
Y.
Yan
,
S.
Xu
et al, “
An adaptive yaw method of horizontal-axis tidal stream turbines for bidirectional energy capture
,”
Energy
282
,
128918
(
2023
).
8.
R.
Martinez
,
G. S.
Payne
, and
T.
Bruce
, “
The effects of oblique waves and currents on the loadings and performance of tidal turbines
,”
Ocean Eng.
164
,
55
64
(
2018
).
9.
Y.
Zhang
,
B.
Peng
,
J.
Zheng
et al, “
The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition
,”
Energy
283
,
129071
(
2023
).
10.
C.
Zhang
,
J.
Zhang
,
A.
Angeloudis
et al, “
Physical modelling of tidal stream turbine wake structures under yaw conditions
,”
Energies
16
(
4
),
1742
(
2023
).
11.
G. W.
Qian
and
T.
Ishihara
, “
A new analytical wake model for yawed wind turbines
,”
Energies
11
(
3
),
665
(
2018
).
12.
M.
Bastankhah
,
C. R.
Shapiro
,
S.
Shamsoddin
et al, “
A vortex sheet based analytical model of the curled wake behind yawed wind turbines
,”
J. Fluid Mech.
933
,
A2
(
2022
).
13.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
et al,
Wind Energy Handbook
(
John Wiley & Sons
,
2011
).
14.
S.
Park
,
S.
Park
, and
S. H.
Rhee
, “
Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine
,”
Renewable Energy
92
,
321
332
(
2016
).
15.
W.
Tian
,
J. H.
VanZwieten
,
P.
Pyakurel
et al, “
Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine
,”
Energy
111
,
104
116
(
2016
).
16.
C. H.
Frost
,
P. S.
Evans
,
M. J.
Harrold
et al, “
The impact of axial flow misalignment on a tidal turbine
,”
Renewable Energy
113
,
1333
1344
(
2017
).
17.
Z.
Ye
,
X.
Wang
,
Z.
Chen
et al, “
Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing
,”
Acta Mech. Sin.
36
,
320
338
(
2020
).
18.
C. S. K.
Belloni
,
R. H. J.
Willden
, and
G. T.
Houlsby
, “
A numerical analysis of bidirectional ducted tidal turbines in yawed flow
,”
Mar. Technol. Soc. J.
47
(
4
),
23
35
(
2013
).
19.
V.
Dighe
,
D.
Suri
,
F.
Avallone
et al, “
Ducted wind turbines in yawed flow: A numerical study
,”
Wind Energy Sci.
6
,
1263
1275
(
2019
).
20.
V. V.
Dighe
,
F.
Avallone
, and
G.
van Bussel
, “
Effects of yawed inflow on the aerodynamic and aeroacoustic performance of ducted wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
201
,
104174
(
2020
).
21.
M. G.
Borg
,
Q.
Xiao
,
S.
Allsop
et al, “
A numerical swallowing-capacity analysis of a vacant, cylindrical, bi-directional tidal turbine duct in aligned & yawed flow conditions
,”
J. Mar. Sci. Eng.
9
(
2
),
182
(
2021
).
22.
P.
Garcia Novo
and
Y.
Kyozuka
, “
Analysis of turbulence and extreme current velocity values in a tidal channel
,”
J. Mar. Sci. Technol.
24
(
3
),
659
672
(
2019
).
23.
M. M.
Nunes
,
A. C. P. B.
Junior
, and
T. F.
Oliveira
, “
Systematic review of diffuser-augmented horizontal-axis turbines
,”
Renewable Sustainable Energy Rev.
133
,
110075
(
2020
).
24.
Y.
Si
,
X.
Liu
,
T.
Wang
et al, “
State-of-the-art review and future trends of development of tidal current energy converters in China
,”
Renewable Sustainable Energy Rev.
167
,
112720
(
2022
).
25.
M.
Borg
,
Q.
Xiao
,
S.
Allsop
, and
C.
Peyrard
, “
A numerical structural analysis of ducted, high-solidity, fibre-composite tidal turbine rotor configurations in real flow conditions
,”
Ocean Eng.
233
,
109087
(
2021
).
26.
K.
Touimi
,
M.
Benbouzid
, and
P.
Tavner
, “
Tidal stream turbines: With or without a Gearbox?
,”
Ocean Eng.
170
,
74
88
(
2018
).
27.
S. C.
Allsop
, “
Hydrodynamic modelling for structural analysis of tidal stream turbine blades
,” Ph.D. dissertation (
University of Cambridge
,
2018
).
28.
A.
Bahaj
,
A.
Molland
,
J.
Chaplin
, and
W.
Batten
, “
Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank
,”
Renewable Energy
32
(
3
),
407
426
(
2007
).
29.
M.
Slama
,
G.
Pinon
,
C.
El Hadi
et al, “
Turbine design dependency to turbulence: An experimental study of three scaled tidal turbines
,”
Ocean Eng.
234
,
109035
(
2021
).
30.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamic-the Finite Volume Method
(
Wiley
,
New York
,
1995
).
31.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
(
Springer Berlin
;
2000
), Vol.
3
.
32.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
33.
W.
Rodi
,
G.
Constantinescu
, and
T.
Stoesser
,
Large-Eddy Simulation in Hydraulics
(
CRC Press
,
2013
).
34.
J.
Schluntz
and
R. H. J.
Willden
, “
The effect of blockage on tidal turbine rotor design and performance
,”
Renewable Energy
81
,
432
441
(
2015
).
35.
H.
Lee
and
D. J.
Lee
, “
Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions
,”
Renewable Energy
136
,
383
392
(
2019
).
36.
A.
Fluent
,
18.0 ANSYS Fluent Theory Guide 18.0.
(
Ansys Inc
,
2017
).
37.
X.
Si
,
Y.
Xie
,
J.
Tan
et al, “
Study on the impact of wave characteristics on the performance of full-scale tidal turbine
,”
Ocean Eng.
303
,
117800
(
2024
).
38.
B.
Feng
,
X.
Liu
,
Y.
Ying
et al, “
Research on the tandem arrangement of the ducted horizontal-axis tidal turbine
,”
Energy Convers. Manage.
258
,
115546
(
2022
).
39.
X.
Liu
,
H.
Xu
,
B.
Wang
,
Y.
Wang
,
C.
Li
,
Y.
Si
,
P.
Qian
, and
D.
Zhang
, “
An analytical double-Gaussian wake model of ducted horizontal-axis tidal turbine
,”
Phys. Fluids
35
(
4
),
043103
(
2023
).
40.
U.
Piomelli
, “
Large-eddy simulation: Achievements and challenges
,”
Prog. Aerosp. Sci.
35
(
4
),
335
362
(
1999
).
41.
I.
Afgan
,
J.
McNaughton
,
S.
Rolfo
et al, “
Turbulent flow and loading on a tidal stream turbine by LES and RANS
,”
Int. J. Heat Fluid Flow
43
,
96
108
(
2013
).
42.
D.
Chu
,
H.
Niu
,
Y. P.
Wang
et al, “
Numerical study on tidal duration asymmetry and shallow-water tides within multiple islands: An example of the Zhoushan Archipelago
,”
Estuarine, Coastal Shelf Sci.
262
,
107576
(
2021
).
43.
P.
Druault
,
B.
Gaurier
, and
G.
Germain
, “
Spatial integration effect on velocity spectrum: Towards an interpretation of the −11/3 power law observed in the spectra of turbine outputs
,”
Renewable Energy
181
,
1062
1080
(
2022
).
44.
P.
Druault
and
J. F.
Krawczynski
, “
Numerical investigation of the spatial integration effect on the velocity spectrum: Consequences in the wind or tidal turbine power spectrum
,”
Comput. Fluids
250
,
105729
(
2023
).
45.
X.
Liu
,
B.
Feng
,
D.
Liu
et al, “
Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine
,”
Energy
241
,
122839
(
2022
).
46.
S.
Rashidi
,
M.
Hayatdavoodi
, and
J. A.
Esfahani
, “
Vortex shedding suppression and wake control: A review
,”
Ocean Eng.
126
,
57
80
(
2016
).
47.
H.
Zong
and
F.
Porté-Agel
, “
A point vortex transportation model for yawed wind turbine wakes
,”
J. Fluid Mech.
890
,
A8
(
2020
).
48.
P. K.
Modali
,
A.
Vinod
, and
A.
Banerjee
, “
Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays
,”
Renewable Energy
177
,
482
494
(
2021
).
49.
A. R.
Cieślik
,
R. A. D.
Akkermans
,
L. P. J.
Kamp
et al, “
Dipole-wall collision in a shallow fluid
,”
Eur. J. Mech. B
28
(
3
),
397
404
(
2009
).
You do not currently have access to this content.