In this paper, we propose an upwind compact difference method with fourth-order spatial accuracy and second-order temporal accuracy for solving the streamfunction-velocity formulation of the two-dimensional unsteady incompressible Navier–Stokes equations. The streamfunction and its first-order partial derivatives (velocities) are treated as unknown variables. Three types of compact difference schemes are employed to discretize the first-order partial derivatives of the streamfunction. Specifically, these schemes include the fourth-order symmetric scheme, the fifth-order upwind scheme, and the sixth-order symmetric scheme derived by combining the two parts of the fifth-order upwind scheme. As a result, the fourth-order spatial discretization schemes are established for the Laplacian term, the biharmonic term, and the nonlinear convective term, along with the Crank–Nicolson scheme for the temporal discretization. The unconditional stability characteristic of the scheme for the linear model is proved by discrete von Neumann analysis. Moreover, six numerical experiments involving three test problems with the analytic solutions, and three flow problems including doubly periodic double shear layer, lid-driven cavity flow, and dipole-wall interaction are carried out to demonstrate the accuracy, robustness, and efficiency of the present method. The results indicate that the present method not only has good numerical performance but also exhibits quite efficiency.

1.
R.
Kupferman
, “
A central-difference scheme for a pure stream function formulation of incompressible viscous flow
,”
SIAM J. Sci. Comput.
23
,
1
18
(
2001
).
2.
M.
Ben-Artzi
,
J.-P.
Croisille
,
D.
Fishelov
, and
S.
Trachtenberg
, “
A pure-compact scheme for the streamfunction formulation of Navier–Stokes equations
,”
J. Comput. Phys.
205
,
640
664
(
2005
).
3.
M. M.
Gupta
and
J. C.
Kalita
, “
A new paradigm for solving Navier–Stokes equations: Streamfunction-velocity formulation
,”
J. Comput. Phys.
207
,
52
68
(
2005
).
4.
J. C.
Kalita
and
M. M.
Gupta
, “
A streamfunction-velocity approach for 2D transient incompressible viscous flows
,”
Int. J. Numer. Methods Fluids
62
,
237
266
(
2010
).
5.
M.
Ben-Artzi
,
J.-P.
Croisille
, and
D.
Fishelov
, “
A high order compact scheme for the pure-streamfunction formulation of the Navier–Stokes equations
,”
J. Sci. Comput.
42
,
216
250
(
2010
).
6.
Z. F.
Tian
and
P. X.
Yu
, “
An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
230
,
6404
6419
(
2011
).
7.
P. X.
Yu
and
Z. F.
Tian
, “
Compact computations based on a stream-function–velocity formulation of two-dimensional steady laminar natural convection in a square cavity
,”
Phys. Rev. E
85
,
036703
(
2012
).
8.
P. X.
Yu
and
Z. F.
Tian
, “
A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier–Stokes equations
,”
Comput. Math. Appl.
66
,
1192
1212
(
2013
).
9.
P. X.
Yu
and
Z. F.
Tian
, “
A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier–Stokes equations in polar coordinaes
,”
J. Sci. Comput.
56
,
165
189
(
2013
).
10.
P. X.
Yu
,
J. X.
Qiu
,
Q.
Qin
, and
Z. F.
Tian
, “
Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field
,”
Int. J. Heat Mass Transfer
67
,
1131
1144
(
2013
).
11.
S.
Sen
,
J. C.
Kalita
, and
M. M.
Gupta
, “
A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic stream function formulation
,”
Comput. Fluids
84
,
141
163
(
2013
).
12.
S.
Sen
and
J. C.
Kalita
, “
A 4OEC scheme for the biharmonic steady Navier–Stokes equations in non-rectangular domains
,”
Comput. Phys. Commun.
196
,
113
133
(
2015
).
13.
S.
Pandit
and
H.
Karmakar
, “
An efficient implicit compact streamfunction velocity formulation of two dimensional flows
,”
J. Sci. Comput.
68
,
653
688
(
2016
).
14.
D.
Fishelov
, “
A new fourth-order compact scheme for the Navier–Stokes equations in irregular domains
,”
Comput. Math. Appl.
74
,
6
25
(
2017
).
15.
P.
Yu
,
Z. F.
Tian
,
A. Y.
Ying
, and
M. A.
Abdou
, “
Stream function-velocity-magnetic induction compact difference method for the 2D steady incompressible full magnetohydrodynamic equations
,”
Comput. Phys. Commun.
219
,
45
69
(
2017
).
16.
P.
Yu
and
Z. F.
Tian
, “
An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier–Stokes equation
,”
Comput. Math. Appl.
75
,
3224
3243
(
2018
).
17.
P.
Yu
and
Z. F.
Tian
, “
A high-order compact scheme for the pure streamfunction (vector potential) formulation of the 3D steady incompressible Navier–Stokes equations
,”
J. Comput. Phys.
382
,
65
85
(
2019
).
18.
J. Q.
Chen
,
P.
Yu
,
Z. F.
Tian
, and
H.
Ouyang
, “
A high-order compact scheme for solving the 2D steady incompressible Navier–Stokes equations in general curvilinear coordinates
,”
Int. J. Numer. Methods Fluids
92
,
456
477
(
2020
).
19.
Z. C.
Xiao
,
P.
Yu
,
H.
Ouyang
, and
J. J.
Zhang
, “
A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier–Stokes equation
,”
Commun. Nonlinear Sci. Numer. Simul.
95
,
105631
(
2021
).
20.
B.
Peng
,
X. H.
Guo
,
Y.
Zu
, and
Z. F.
Tian
, “
A physics-preserving pure streamfunction formulation and high-order compact solver with high-resolution for three-dimensional steady incompressible flows
,”
Phys. Fluids
35
,
043104
(
2023
).
21.
J. B.
Lu
,
Z. X.
Chen
, and
Z. F.
Tian
, “
A less time-consuming upwind compact difference method with adjusted dissipation property for solving the unsteady incompressible Navier–Stokes equations
,”
Comput. Math. Appl.
126
,
149
171
(
2022
).
22.
V. S.
Yadav
,
V.
Maurya
,
P. K.
Maurya
, and
M. K.
Rajpoot
, “
Novel hybrid compact schemes for stream function-velocity formulation of the incompressible Navier–Stokes equations
,”
Phys. Fluids
35
,
017114
(
2023
).
23.
M. H.
Carpenter
,
D.
Gottlieb
, and
S.
Abarbanel
, “
The stability of numerical boundary treatments for compact high-order finite-difference schemes
,”
J. Comput. Phys.
108
,
272
295
(
1993
).
24.
Z. F.
Tian
,
X.
Liang
, and
P. X.
Yu
, “
A higher order compact finite difference algorithm for solving the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Eng.
88
,
511
532
(
2011
).
25.
J.
Wang
,
W. J.
Zhong
, and
J.
Zhang
, “
High order compact computation and nonuniform grids for streamfunction vorticity equations
,”
Appl. Math. Comput.
179
,
108
120
(
2006
).
26.
J. B.
Bell
,
P.
Colella
, and
H. M.
Glaz
, “
A second-order projection method for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
85
,
257
283
(
1989
).
27.
U.
Ghia
,
K.
Ghia
, and
C.
Shin
, “
High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
28.
N.
Wright
and
P.
Gaskell
, “
An efficient multigrid approach to solving highly recirculating flows
,”
Comput. Fluids
24
,
63
79
(
1995
).
29.
E.
Erturk
and
C.
Gökçöl
, “
Fourth-order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers
,”
Int. J. Numer. Methods Fluids
50
,
421
436
(
2006
).
30.
E. M.
Wahba
, “
Steady flow simulations inside a driven cavity up to Reynolds number 35,000
,”
Comput. Fluids
66
,
85
97
(
2012
).
31.
C. H.
Marchi
,
C. D.
Santiago
, and
C. A. R. D.
Carvalho
, Jr.
,“
Lid-driven square cavity flow: A benchmark solution with an 8192 × 8192 grid
,”
J. Verif. Validation
Uncertainty
6
,
041004
(
2021
).
32.
F.
Auteri
,
N.
Parolini
, and
L.
Quartapelle
, “
Numerical investigation on the stability of singular driven cavity flow
,”
J. Comput. Phys.
183
,
1
25
(
2002
).
33.
T. A.
Abdelmigid
,
K. M.
Saqr
,
M. A.
Kotb
, and
A. A.
Aboelfarag
, “
Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code
,”
Alexandria Eng. J.
56
,
123
135
(
2017
).
34.
H. J. H.
Clercx
and
C. H.
Bruneau
, “
The normal and oblique collision of a dipole with a no-slip boundary
,”
Comput. Fluids
35
,
245
279
(
2006
).
35.
R.
Knikker
, “
Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows
,”
Int. J. Numer. Methods Fluids
59
,
1063
1092
(
2009
).
36.
A.
Tyliszczak
, “
A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows
,”
J. Comput. Phys.
276
,
438
467
(
2014
).
You do not currently have access to this content.