In the present work, the risk of infectious disease transmission is evaluated based on a statistical analysis of respiratory droplet trajectory distribution. An analytical model recently developed by the authors allows the prediction of the trajectory and evaporation rate of exhaled droplets. The model is used to collect data from a sampling set of more than twenty thousand droplets distributed over a range of diameters from 0.1 μm to 1 mm for different respiratory scenarios. The analytical tool implements the governing equations of droplet transport, evaporation, energy balance, and chemical composition. It also features a two-dimensional unsteady empirical model of respiratory cloud including momentum dissipation and buoyancy. A discrete random walk approach to simulate the droplet turbulent dispersion, and the randomization of the droplet release within the exhalation period and the mouth cross section area complete the model enabling statistical analyses to be rightly performed. With the due boundary conditions, different types of respiratory events can be modeled easily. With additional information on the exhaled droplet size distribution and viral content, spatial maps of virus concentration are derived and associated with the risk of infectious disease transmission being able to discriminate between various transmission routes such as fomite, airborne, or direct inhalation. Different scenarios are presented including mouth breathing, nose breathing, speaking, coughing, and sneezing. The fluid dynamic behavior of respiratory droplets is explored on a size basis, and the role of ventilation discussed. Risk evaluation provides useful information for a knowledgeable discussion on the prevention needs and means from case to case.

1.
H.
Motamedi
,
M.
Shirzadi
,
Y.
Tominaga
, and
P. A.
Mirzaei
, “
CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies
,”
Sustainable Cities Soc.
76
,
103397
(
2022
).
2.
L.
Borro
,
L.
Mazzei
,
M.
Raponi
,
P.
Piscitelli
,
A.
Miani
, and
A.
Secinaro
, “
The role of air conditioning in the diffusion of SARS-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children's Hospital
,”
Environ. Res.
193
,
110343
(
2021
).
3.
D. E.
Ramayo
and
S. F.
Corzo
, “
Airborne transmission risk in urban buses: A computational fluid dynamics study
,”
Aerosol Air Qual. Res.
22
,
210334
(
2022
).
4.
V.
Vuorinen
,
M.
Aarnio
,
M.
Alava
,
V.
Alopaeus
,
N.
Atanasova
,
M.
Auvinen
,
N.
Balasubramanian
,
H.
Bordbar
,
P.
Erästö
,
R.
Grande
,
N.
Hayward
,
A.
Hellsten
,
S.
Hostikka
,
J.
Hokkanen
,
O.
Kaario
,
A.
Karvinen
,
I.
Kivistö
,
M.
Korhonen
,
R.
Kosonen
,
J.
Kuusela
,
S.
Lestinen
,
E.
Laurila
,
H.
Nieminen
,
P.
Peltonen
,
J.
Pokki
,
A.
Puisto
,
P.
Råback
,
H.
Salmenjoki
,
T.
Sironen
, and
M.
Österberg
, “
Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
,”
Saf. Sci.
130
,
104866
(
2020
).
5.
G.
Busco
,
S. R.
Yang
,
J.
Seo
, and
Y. A.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
,
073309
(
2020
).
6.
B.
Stiehl
,
R.
Shrestha
,
S.
Schroeder
,
J.
Delgado
,
A.
Bazzi
,
J.
Reyes
,
M.
Kinzel
, and
K.
Ahmed
, “
The effect of relative air humidity on the evaporation timescales of a human sneeze
,”
AIP Adv.
12
,
075210
(
2022
).
7.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
8.
C.
Cravero
and
D.
Marsano
, “
Simulation of COVID-19 indoor emissions from coughing and breathing with air conditioning and mask protection effects
,”
Indoor Built Environ.
31
,
1242
1261
(
2022
).
9.
M.
Puglia
,
F.
Ottani
,
N.
Morselli
,
S.
Pedrazzi
,
G.
Allesina
,
A.
Muscio
,
A.
Cossarizza
, and
P.
Tartarini
, “
Airborne pathogens diffusion: A comparison between tracer gas and pigmented aerosols for indoor environment analysis
,”
Heliyon
10
,
e26076
(
2024
).
10.
R.
Albertin
,
G.
Pernigotto
, and
A.
Gasparella
, “
A Monte Carlo assessment of the effect of different ventilation strategies to mitigate the COVID-19 contagion risk in educational buildings
,”
Indoor Air
2023
,
9977685
.
11.
R.
Mokhtari
and
M. H.
Jahangir
, “
The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: A case study of university building
,”
Build. Environ.
190
,
107561
(
2021
).
12.
B.
Wang
,
A.
Zhang
,
J. L.
Sun
,
H.
Liu
,
J.
Hu
, and
L. X.
Xu
, “
Study of SARS transmission via liquid droplets in air
,”
J. Biomech. Eng.
127
,
32
38
(
2005
).
13.
D.
Parienta
,
L.
Morawska
,
G. R.
Johnson
,
Z. D.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C. Y. H.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Theoretical analysis of the motion and evaporation of exhaled respiratory droplet of mixed composition
,”
J. Aerosol Sci.
42
,
1
10
(
2011
).
14.
X.
Xie
,
Y.
Li
,
A.
Chwang
,
P.
Ho
, and
W.
Seto
, “
How far droplets can move in indoor environments—Revisiting the Wells evaporation-falling curve
,”
Indoor Air
17
,
211
225
(
2007
).
15.
W.
Chen
,
N.
Zhang
,
J.
Wei
,
H.-L.
Yen
, and
Y.
Li
, “
Short-range airborne route dominates exposure of respiratory infection during close contact
,”
Build. Environ.
176
,
106859
(
2020
).
16.
V. V.
Baturin
,
Fundamentals of Industrial Ventilation
(
Pergamon Press
,
Oxford
,
1972
).
17.
J.
Redrow
,
S.
Mao
,
I.
Celik
,
J.
Posada
, and
Z.-G.
Feng
, “
Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough
,”
Build. Environ.
46
,
2042
2051
(
2011
).
18.
J.
Wei
and
Y.
Li
, “
Enhanced spread of expiratory droplets by turbulence in a cough jet
,”
Build. Environ.
93
,
86
96
(
2015
).
19.
S.
Chan
,
K.
Lee
, and
J.
Lee
, “
Numerical modelling of horizontal sediment-laden jets
,”
Environ. Fluid Mech.
14
,
173
200
(
2014
).
20.
L.
Bourouiba
,
E.
Dehandschoewercker
, and
J.
Bush
, “
Violent expiratory events: On coughing and sneezing
,”
J. Fluid Mech.
745
,
537
563
(
2014
).
21.
S.
Balachandar
,
S.
Zaleski
,
A.
Soldati
,
G.
Ahmadi
, and
L.
Bourouiba
, “
Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
,”
Int. J. Multiphase Flow
132
,
103439
(
2020
).
22.
M.
Cavazzuti
and
P.
Tartarini
, “
Transport and evaporation of exhaled respiratory droplets: An analytical model
,”
Phys. Fluids
35
,
103327
(
2023
).
23.
J. P.
Duguid
, “
The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
,”
J. Hyg.
244
,
471
479
(
1946
).
24.
C. Y. H.
Chao
,
M. P.
Wan
,
L.
Morawska
,
G. R.
Johnson
,
Z. D.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
Y.
Li
,
X.
Xie
, and
D.
Katoshevski
, “
Characterization of expiration air jets and droplet size distributions immediately at the mouth opening
,”
J. Aerosol Sci.
40
,
122
133
(
2009
).
25.
L.
Morawska
,
G. R.
Johnson
,
Z. D.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C. Y. H.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
,”
J. Aerosol Sci.
40
,
256
269
(
2009
).
26.
M.
Alsved
,
A.
Matamis
,
R.
Bohlin
,
M.
Richter
,
P.-E.
Bengtsson
,
C.-J.
Fraenkel
,
P.
Medstrand
, and
J.
Löndahl
, “
Exhaled respiratory particles during singing and talking
,”
Aerosol Sci. Technol.
54
,
1245
1248
(
2020
).
27.
L.
Bourouiba
, “
Fluid dynamics of respiratory infectious diseases
,”
Annu. Rev. Biomed. Eng.
23
,
547
577
(
2021
).
28.
K.-W.
To
,
O.-Y.
Tsang
,
C.-Y.
Yip
,
K.-H.
Chan
,
T.-C.
Wu
,
J.-C.
Chan
,
W.-S.
Leung
,
T.-H.
Chik
,
C.-C.
Choi
,
D.
Kandamby
,
D.
Lung
,
A.
Tam
,
R.-S.
Poon
,
A.-F.
Fung
,
I.-N.
Hung
,
V.-C.
Cheng
,
J.-W.
Chan
, and
K.-Y.
Yuen
, “
Consistent detection of 2019 novel coronavirus in saliva
,”
Clin. Infect. Dis.
71
,
841
843
(
2020
).
29.
Y.
Pang
,
D.
Zang
,
P.
Yang
,
L.
Poon
, and
Q.
Wang
, “
Viral load of SARS-CoV-2 in clinical samples
,”
Lancet Infect. Dis.
20
,
411
412
(
2020
).
30.
J. M.
Kolinski
and
T. M.
Schneider
, “
Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces
,”
Phys. Rev. E
103
,
033109
(
2021
).
31.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
,”
N. Engl. J. Med.
382
,
1564
1567
(
2020
).
32.
G.
Buonanno
,
L.
Stabile
, and
L.
Morawska
, “
Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment
,”
Environ. Int.
141
,
105794
(
2020
).
33.
J.
Pantelic
and
K. W.
Tham
, “
Assessment of the mixing air delivery system ability to protect occupants from the airborne infectious disease transmission using Wells–Riley approach
,”
HVACR Res.
18
,
562
574
(
2012
).
34.
E. C.
Riley
,
G.
Murphy
, and
R. L.
Riley
, “
Airborne spread of measles in a suburban elementary school
,”
Am. J. Epidemiol.
107
,
421
432
(
1978
).
35.
W. F.
Wells
,
Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections
(
Harvard University Press
,
Cambridge
,
1955
).
36.
REHVA COVID-19 guidance document: How to operate and use building services in order to prevent the spread of the coronavirus disease (COVID-19) virus (SARS-CoV-2) in workplaces
,” Technical Report (
Federation of European Heating, Ventilation and Air Conditioning Associations
,
2020
).
37.
F.
Bozzoli
,
L.
Cattani
, and
S.
Rainieri
, “
Effect of wall corrugation on local convective heat transfer in coiled tubes
,”
Int. J. Heat Mass Transfer
101
,
76
90
(
2016
).
38.
S.
Elgobashi
and
G. C.
Truesdell
, “
Direct simulation of particle dispersion in a decaying isotropic turbulence
,”
J. Fluid Mech.
242
,
655
700
(
1992
).
39.
E.
Cunningham
, “
On the velocity of steady fall of spherical particles through fluid medium
,”
Proc. R. Soc. A
83
,
357
365
(
1910
).
40.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, Part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
41.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, Part II
,”
Chem. Eng. Prog.
48
,
173
180
(
1952
).
42.
F.-M.
Raoult
, “
Loi générale des tensions de vapeur des dissolvants
,”
C. R. Hebd. Seances Acad. Sci.
104
,
1430
1433
(
1887
).
43.
J. K.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Flow dynamics and characterization of a cough
,”
Indoor Air
19
,
517
525
(
2009
).
44.
J.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Characterizing exhaled airflow from breathing and talking
,”
Indoor Air
20
,
31
39
(
2010
).
45.
B.
Wang
,
H.
Wu
, and
X.-F.
Wan
, “
Transport and fate of human expiratory droplets—A modeling approach
,”
Phys. Fluids
32
,
083307
(
2020
).
46.
J.
Smolík
,
L.
Džumbová
,
J.
Schwarz
, and
M.
Kulmala
, “
Evaporation of ventilated water droplet: Connection between heat and mass transfer
,”
J. Aerosol Sci.
32
,
739
748
(
2001
).
47.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabu
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in Covid-19 type pandemics
,”
Phys. Fluids
32
,
063309
(
2020
).
48.
H.
Wang
,
Z.
Li
,
X.
Zhang
,
L.
Zhu
,
Y.
Liu
, and
S.
Wang
, “
The motion of respiratory droplets produced by coughing
,”
Phys. Fluids
32
,
125102
(
2020
).
49.
C. P.
Cummins
,
O. J.
Ajayi
,
F. V.
Mehendale
,
R.
Gabl
, and
I. M.
Viola
, “
The dispersion of spherical droplets in source-sink flows and their relevance to the COVID-19 pandemic
,”
Phys. Fluids
32
,
083302
(
2020
).
50.
N. H. L.
Leung
,
D.
Chu
,
E.
Shiu
,
K.-H.
Chan
,
J.
McDevitt
,
B. J.
Hau
,
H.-L.
Yen
,
Y.
Li
,
D. K. M.
Ip
,
J. S. M.
Peiris
,
W.-H.
Seto
,
G.
Leung
,
D.
Milton
, and
B.
Cowling
, “
Respiratory virus shedding in exhaled breath and efficacy of face masks
,”
Nat. Med.
26
,
676
680
(
2020
).
51.
R.
Alford
,
J.
Kasel
,
P.
Gerone
, and
V.
Knight
, “
Human influenza resulting from aerosol inhalation
,”
Proc. Soc. Exp. Biol. Med.
122
,
800
804
(
1966
).
52.
S.
Asadi
,
A.
Wexler
,
C.
Cappa
,
S.
Barreda
,
N.
Bouvier
, and
W.
Ristenpart
, “
Aerosol emission and superemission during human speech increase with voice loudness
,”
Sci. Rep.
9
,
2348
(
2019
).
53.
P.
Bahl
,
C.
Doolan
,
C.
de Silva
,
A. A.
Chughtai
,
L.
Bourouiba
, and
C. R.
MacIntyre
, “
Airborne or droplet precautions for health workers treating coronavirus disease 2019?
,”
J. Infect. Dis.
225
,
1561
1568
(
2020
).
54.
J.
Tang
,
A.
Nicolle
,
C.
Klettner
,
J.
Pantelic
,
L.
Wang
,
A.
Suhaimi
,
A.
Tan
,
G.
Ong
,
R.
Su
,
C.
Sekhar
,
D.
Cheong
, and
K.
Tham
, “
Airflow dynamics of human jets: Sneezing and breathing—Potential sources of infectious aerosols
,”
PLoS One
8
,
e59970
(
2013
).
55.
H.
Li
,
F. W.
Leong
,
G.
Xu
,
Z.
Ge
,
C. W.
Kang
, and
K. H.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
56.
J.
Wang
,
F.
Dalla Barba
,
A.
Roccon
,
G.
Sardina
,
A.
Soldati
, and
F.
Picano
, “
Modelling direct virus exposure risk associated with respiratory events
,”
J. R. Soc. Interface
19
,
20210819
(
2022
).
57.
B.
Kumar
,
N.
Kashyap
,
A.
Avinash
,
R.
Chevvuri
,
M.
Sagar
, and
K.
Shrikant
, “
The composition, function and role of saliva in maintaining oral health: A review
,”
Int. J. Contemp. Dent. Med. Rev.
2017
,
011217
.
58.
M.
Abkarian
,
S.
Mendez
,
N.
Xue
,
F.
Yang
, and
H.
Stone
, “
Speech can produce jet-like transport relevant to asymptomatic spreading of virus
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
25237
25245
(
2020
).
59.
C.
Xu
,
P.
Nielsen
,
L.
Liu
,
R.
Jensen
, and
G.
Gong
, “
Human exhalation characterization with the aid of schlieren imaging technique
,”
Build. Environ.
112
,
190
199
(
2017
).
60.
E.
Bjørn
and
P.
Nielsen
, “
Dispersal of exhaled air and personal exposure in displacement ventilated rooms
,”
Indoor Air
12
,
147
164
(
2002
).
61.
T.
Foat
,
B.
Higgins
,
C.
Abbs
,
T.
Maishman
,
S.
Coldrick
,
A.
Kelsey
,
M.
Ivings
,
S.
Parker
, and
C.
Noakes
, “
Modelling the effect of temperature and relative humidity on exposure to SARS-CoV-2 in a mechanically ventilated room
,”
Indoor Air
32
,
e13146
(
2022
).
You do not currently have access to this content.