This paper reports the experimental results of the vibration response of a hybrid riser conveying severe slugging. The hybrid riser comprises a vertical rigid riser made of a transparent acrylic tube and a flexible jumper made of a transparent silica gel tube with a length to internal diameter ratio of 261. The horizontal span and vertical height of the flexible jumper are 83.5 and 45 cm, respectively. The flow-induced vibration tests were carried out in the liquid superficial velocity range of Vsl = 0.098–0.688 m/s and the gas superficial velocity range of Vsg = 0.177–0.649 m/s using non-intrusive optical measurement with high-speed cameras. Five flow regimes are observed, including the severe slugging I (SSI), severe slugging II (SSII), severe slugging III (SSIII), stable flow (ST), and oscillation flow regimes. The vibration response of the flexible jumper is related to the flow regime. As the flow regime changes from SSI to SSII, the absence of the slug production stage results in an augmented amplitude. In contrast, the response amplitude is significantly reduced when the flow regime shifts to ST. For the SSI regime, the response amplitude varies over the stage, and the occurrence of multiple frequencies is associated with the pressure fluctuation as well as the different duration of stages. The maximum amplitude is observed in the liquid fallback stage in spite of the limited duration, and the vibration frequency is close to the fundamental natural one. The liquid slugs of different lengths passing through the jumper at different velocities contribute to the presence of the traveling wave characteristic.

1.
S.
Shi
,
X.
Wu
,
G.
Han
,
Z.
Zhong
,
Z.
Li
, and
K.
Sun
, “
Numerical slug flow model of curved pipes with experimental validation
,”
ACS Omega
4
(
12
),
14831
14840
(
2019
).
2.
J.
Fabre
,
L. L.
Peresson
,
J.
Corteville
,
R.
Odello
, and
T.
Bourgeois
, “
Severe slugging in pipeline/riser systems
,”
SPE Prod. Eng.
5
(
03
),
299
305
(
1990
).
3.
Z.
Schmidt
,
J. P.
Brill
, and
H. D.
Beggs
, “
Experimental study of severe slugging in a two-phase-flow pipeline - riser pipe system
,”
Soc. Pet. Eng. J.
20
(
05
),
407
414
(
1980
).
4.
C.
Sarica
and
J. Ø.
Tengesdal
, “
A new technique to eliminate severe slugging in pipeline/riser systems
,” in
SPE Annual Technical Conference and Exhibition?
(
OnePetro
,
2000
).
5.
R. W.
Gregory
and
M. P.
Paidoussis
, “
Unstable oscillation of tubular cantilevers conveying fluid I. Theory
,”
Proc. R. Soc. A
293
(
1435
),
512
527
(
1997
).
6.
D. C.
Wiggert
and
A. S.
Tijsseling
, “
Fluid transients and fluid-structure interaction in flexible liquid-filled piping
,”
Appl. Mech. Rev.
54
(
5
),
455
481
(
2001
).
7.
B. T.
Yocum
, “
Offshore riser slug flow avoidance: Mathematical models for design and optimization
,” in
SPE Europec featured at EAGE Conference and Exhibition?
(
OnePetro
,
1973
).
8.
P.
Wang
,
D.
Deng
,
J.
Gong
,
M.
Peng
,
K.
Wang
, and
J.
Chen
, “
Severe slugging in a free-standing riser
,”
Pet. Sci. Technol.
31
(
19
),
1933
1939
(
2013
).
9.
R.
Malekzadeh
,
R. A. W. M.
Henkes
, and
R. F.
Mudde
, “
Severe slugging in a long pipeline–riser system: Experiments and predictions
,”
Int. J. Multiphase Flow
46
,
9
21
(
2012
).
10.
B. F. M.
Pots
,
I. G.
Bromilow
, and
M. J. W. F.
Konijn
, “
Severe slug flow in offshore flowline/riser systems
,”
SPE Prod. Eng.
2
(
04
),
319
324
(
1987
).
11.
A.
Shmueli
,
D. C.
González
,
A. A.
Parra
, and
M. A.
Asuaje
, “
Model for terrain-induced slug flow for high viscous liquids
,”
J. Comput. Multiphase Flows
6
(
4
),
431
446
(
2014
).
12.
L.
Xing
,
H.
Yeung
,
J.
Shen
, and
Y.
Cao
, “
Numerical study on mitigating severe slugging in pipeline/riser system with wavy pipe
,”
Int. J. Multiphase Flow
53
,
1
10
(
2013
).
13.
Z.
Schmidt
,
D. R.
Doty
, and
K.
Dutta-Roy
, “
Severe slugging in offshore pipeline riser-pipe systems
,”
Soc. Pet. Eng. J.
25
(
01
),
27
38
(
1985
).
14.
Y.
Taitel
, “
Stability of severe slugging
,”
Int J Multiphase Flow
12
(
2
),
203
217
(
1986
).
15.
R.
Malekzadeh
,
R. F.
Mudde
, and
R. A W. M.
Henkes
, “
Dependence of severe slugging on the orientation angle of the pipeline upstream of the riser base
,” in
BHR North American Conference on Multiphase Production Technology
(
OnePetro
,
2012
).
16.
S.
Zou
,
L.
Guo
, and
T.
Yao
, “
Upstream-flow-based mechanisms for global flow regime transition of gas/liquid two-phase flow in pipeline-riser systems
,”
Chem. Eng. Sci.
240
,
116542
(
2021
).
17.
Y.
Taitel
,
S.
Vierkandt
,
O.
Shoham
, and
J. P.
Brill
, “
Severe slugging in a riser system: Experiments and modeling
,”
Int. J. Multiphase Flow
16
(
1
),
57
68
(
1990
).
18.
G. R.
Azevedo
,
J. L.
Baliño
, and
I.
Andreolli
, “
Nonlinear stability analysis for severe slugging in an air–water two-phase flow
,”
Int. J. Multiphase Flow
159
,
104334
(
2023
).
19.
J. L.
Baliño
,
K. P.
Burr
, and
R. H.
Nemoto
, “
Modeling and simulation of severe slugging in air–water pipeline–riser systems
,”
Int. J. Multiphase Flow
36
(
8
),
643
660
(
2010
).
20.
S.
Gao
,
Y.
You
,
W.
Li
, and
C.
Yang
, “
Influence of liquid-gas physical parameters on severe slugging in a pipeline-riser system
,” in
ISOPE International Ocean and Polar Engineering Conference
(
OnePetro
,
2012
).
21.
J. M.
Cabrera-Miranda
and
J. K.
Paik
, “
Two-phase flow induced vibrations in a marine riser conveying a fluid with rectangular pulse train mass
,”
Ocean Eng.
174
,
71
83
(
2019
).
22.
S.
Meng
,
Y.
Chen
, and
C.
Che
, “
Slug flow's intermittent feature affects VIV responses of flexible marine risers
,”
Ocean Eng.
205
,
106883
(
2020
).
23.
M. D. U.
Onuoha
,
M.
Duan
,
X.
Xu
, and
J.
Liu
, “
Numerical modelling of the interaction between severe slugging and dynamic response of deepwater risers: A time-domain ANHE-FD based solution
,”
Int. J. Non-Linear Mech.
138
,
103834
(
2022
).
24.
M. D. U.
Onuoha
,
M.
Duan
, and
Y.
Wang
, “
Dynamic response and stress impact analysis of production riser under severe slug flow
,” in
ISOPE International Ocean and Polar Engineering Conference
(
ISOPE
,
2016
).
25.
D.
Liu
,
S.
Ai
,
L.
Sun
,
J.
Wei
, and
N.
He
, “
Numerical modelling of offshore risers conveying slug flow under the ALE–ANCF framework
,”
Ocean Eng.
235
,
109415
(
2021
).
26.
Y.
Wang
and
N.-Z.
Chen
, “
An investigation on vortex-induced vibration of a flexible riser transporting severe slugging
,”
Ocean Eng.
246
,
110565
(
2022
).
27.
J.
Duan
,
J.
Zhou
,
Y.
You
, and
X.
Wang
, “
Time-domain analysis of vortex-induced vibration of a flexible mining riser transporting flow with various velocities and densities
,”
Ocean Eng.
220
,
108427
(
2021
).
28.
L.
Wang
,
Y.
Yang
,
C.
Liu
,
Y.
Li
, and
Q.
Hu
, “
Numerical investigation of dynamic response of a pipeline-riser system caused by severe slugging flow
,”
Int. J. Pressure Vessels Piping
159
,
15
27
(
2018
).
29.
J.
Gong
,
Z.
Yang
,
L.
Ma
, and
P.
Wang
, “
Severe slugging in air-water hybrid riser system
,”
Adv. Mech. Eng.
6
,
953213
(
2014
).
30.
W.
Li
,
L.
Guo
, and
X.
Xie
, “
Effects of a long pipeline on severe slugging in an S-shaped riser
,”
Chem. Eng. Sci.
171
,
379
390
(
2017
).
31.
S.
Park
and
O. J.
Nydal
, “
Study on severe slugging in an S-Shaped riser: Small-scale experiments compared with simulations
,”
Oil Gas Facil.
3
(
04
),
72
80
(
2014
).
32.
F. B.
Seyed
and
M. H.
Patel
, “
Mathematics of flexible risers including pressure and internal flow effects
,”
Mar. Struct.
5
(
2–3
),
121
150
(
1992
).
33.
S.
Zou
,
T.
Yao
,
L.
Guo
,
W.
Li
,
Q.
Wu
,
H.
Zhou
,
C.
Xie
,
W.
Liu
, and
S.
Kuang
, “
Non-uniformity of gas/liquid flow in a riser and impact of operation and pipe configuration on slugging characteristics
,”
Exp. Therm. Fluid Sci.
96
,
329
346
(
2018
).
34.
B.
Ma
,
N.
Srinil
,
H.
Zhu
, and
Y.
Gao
, “
Experimental measurement of large-amplitude intermittent vibrations of an inclined bendable riser transporting unsteady multiphase flows
,”
Appl. Ocean Res.
113
,
102731
(
2021
).
35.
H.
Zhu
,
J.
Hu
, and
Y.
Gao
, “
Severe slug flow-induced nonlinear dynamic behavior of a flexible catenary riser
,”
Phys. Fluids
33
(
7
),
071705
(
2021
).
36.
H.
Zhu
,
Y.
Gao
, and
H.
Zhao
, “
Experimental investigation of slug flow-induced vibration of a flexible riser
,”
Ocean Eng.
189
,
106370
(
2019
).
37.
H.
Zhu
,
J.
Hu
,
Y.
Gao
,
C.
Ji
, and
T.
Zhou
, “
Experimental investigation on flow-induced vibration of a flexible catenary riser conveying severe slugging with variable gas superficial velocity
,”
J. Fluids Struct.
113
,
103650
(
2022
).
38.
R.
van Hout
,
L.
Shemer
, and
D.
Barnea
, “
Evolution of hydrodynamic and statistical parameters of gas–liquid slug flow along inclined pipes
,”
Chem. Eng. Sci.
58
(
1
),
115
133
(
2003
).
39.
H.
Zhu
,
Y.
Gao
, and
H.
Zhao
, “
Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow
,”
Ocean Eng.
164
,
488
507
(
2018
).
40.
H.
Zhu
,
P.
Lin
, and
J.
Yao
, “
An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows
,”
Ocean Eng.
121
,
62
75
(
2016
).
41.
S.
Mokhatab
and
B. F.
Towler
, “
Severe slugging in flexible risers: Review of experimental investigations and OLGA predictions
,”
Pet. Sci. Technol.
25
(
7
),
867
880
(
2007
).
42.
Y.
Taitel
and
A. E.
Dukler
, “
A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow
,”
AIChE J.
22
(
1
),
47
55
(
1976
).
43.
A. O.
Mohmmed
,
H. H.
Al-Kayiem
,
A. B.
Osman
, and
O.
Sabir
, “
One-way coupled fluid–structure interaction of gas–liquid slug flow in a horizontal pipe: Experiments and simulations
,”
J. Fluids Struct.
97
,
103083
(
2020
).
44.
H.
Zhu
,
Y.
Gao
,
N.
Srinil
, and
Y.
Bao
, “
Mode switching and standing-travelling waves in slug flow-induced vibration of catenary riser
,”
J. Pet. Sci. Eng.
203
,
108310
(
2021
).
You do not currently have access to this content.