In the advancement of paper-based microfluidic devices, it is reported that the two-ply channel transports fluid noticeably faster than traditional single-ply channels. In this work, the capillary flows in two-ply channels, consisting of a gap of width w between two porous sheets with porosity ε and thickness d, are investigated through many-body dissipative particle dynamics simulations. The advancing meniscus varies with position, characterized by the penetration lengths in the gap (Lg), the porous sheet (Lp), and the maximum value (Lmax). Lmax is always located within the porous sheet but near the gap. The time evolution of the penetration lengths can be described by Washburn's expression, L2 = (S)t, and the imbibition rates Sp, Sg, and Smax depend on ε, d, and w, differing from each other. Two distinct imbibition characteristics are identified: Sg > Sp for low porosities and Sg < Sp for high porosities. Both Sg and Sp decrease with d but increase with w. As ε increases, a minimum of Smax occurs due to the synergistic competition between Sp and Sg. Compared to the single-ply channel, which consists of a single porous sheet, the imbibition rate of the two-ply channel is significantly enhanced by at least four times due to side-imbibition from the gap (acting as a reservoir) toward the porous sheet.

1.
T.
Vinitha
,
S.
Ghosh
,
A.
Milleman
,
T.
Nguyen
, and
C. H.
Ahn
, “
A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva
,”
Lab Chip
20
,
1961
(
2020
).
2.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
,
2323
(
2018
).
3.
D.
Liu
,
Y.
Wang
,
X.
Li
,
M.
Li
,
Q.
Wu
,
Y.
Song
,
Z.
Zhu
, and
C.
Yang
, “
Integrated microfluidic devices for in vitro diagnostics at point of care
,”
Aggregate
3
,
e184
(
2022
).
4.
J.
Esquivel
,
F.
Del Campo
,
J. G.
De La Fuente
,
S.
Rojas
, and
N.
Sabaté
, “
Microfluidic fuel cells on paper: Meeting the power needs of next generation lateral flow devices
,”
Energy Environ. Sci.
7
,
1744
(
2014
).
5.
M.
Ji
and
Z.
Wei
, “
A review of water management in polymer electrolyte membrane fuel cells
,”
Energies
2
,
1057
(
2009
).
6.
M. M.
Gong
and
D.
Sinton
, “
Turning the page: Advancing paper-based microfluidics for broad diagnostic application
,”
Chem. Rev.
117
,
8447
(
2017
).
7.
W.-C.
Tai
,
Y.-C.
Chang
,
D.
Chou
, and
L.-M.
Fu
, “
Lab-on-paper devices for diagnosis of human diseases using urine samples—A review
,”
Biosensors
11
,
260
(
2021
).
8.
J.
Songok
and
M.
Toivakka
, “
Enhancing capillary-driven flow for paper-based microfluidic channels
,”
ACS Appl. Mater. Interfaces
8
,
30523
(
2016
).
9.
G.-L.
Chen
,
G.-Y.
He
,
Y.-J.
Sheng
, and
H.-K.
Tsao
, “
Imbibition dynamics in a u-groove microchannel with sudden enlargement
,”
Langmuir
39
,
10993
(
2023
).
10.
J.
Berthier
,
K. A.
Brakke
, and
E.
Berthier
,
Open Microfluidics
(
John Wiley & Sons
,
2016
).
11.
P.
Kolliopoulos
,
K. S.
Jochem
,
L. F.
Francis
, and
S.
Kumar
, “
Capillary flow of evaporating liquid solutions in open rectangular microchannels
,”
J. Fluid Mech.
938
,
A22
(
2022
).
12.
G.-Y.
He
,
H.-K.
Tsao
, and
Y.-J.
Sheng
, “
Wicking dynamics into two-rail open channel with periodical branches
,”
Phys. Fluids
34
,
102004
(
2022
).
13.
B. P.
Casavant
,
E.
Berthier
,
A. B.
Theberge
,
J.
Berthier
,
S. I.
Montanez-Sauri
,
L. L.
Bischel
,
K.
Brakke
,
C. J.
Hedman
,
W.
Bushman
, and
N. P.
Keller
, “
Suspended microfluidics
,”
Proc. Natl. Acad. Sci.
110
,
10111
(
2013
).
14.
N. M.
Oliveira
,
S.
Vilabril
,
M. B.
Oliveira
,
R. L.
Reis
, and
J. F.
Mano
, “
Recent advances on open fluidic systems for biomedical applications: A review
,”
Mater. Sci. Eng. C
97
,
851
(
2019
).
15.
M.
Lago
and
M.
Araujo
, “
Capillary rise in porous media
,”
J. Colloid Interface Sci.
234
,
35
(
2001
).
16.
J.
Cai
,
T.
Jin
,
J.
Kou
,
S.
Zou
,
J.
Xiao
, and
Q.
Meng
, “
Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
,
1623
(
2021
).
17.
A.
Böhm
,
F.
Carstens
,
C.
Trieb
,
S.
Schabel
, and
M.
Biesalski
, “
Engineering microfluidic papers: Effect of fiber source and paper sheet properties on capillary-driven fluid flow
,”
Microfluid. Nanofluid.
16
,
789
(
2014
).
18.
R. A.
Freeze
,
Groundwater Contamination
(
Wiley Online Library
,
1984
).
19.
N. T.
Madhu
,
P.
Resmi
,
A.
Pradeep
, and
T.
Satheesh Babu
,
Design and Simulation of Fluid Flow in Paper Based Microfluidic Platforms
(
IOP Publishing
,
2019
).
20.
N.
Koursari
,
O.
Arjmandi-Tash
,
A.
Trybala
, and
V. M.
Starov
, “
Drying of foam under microgravity conditions
,”
Microgravity Sci. Technol.
31
,
589
(
2019
).
21.
Y.
Kawagoe
,
T.
Oshima
,
K.
Tomarikawa
,
T.
Tokumasu
,
T.
Koido
, and
S.
Yonemura
, “
A study on pressure-driven gas transport in porous media: From nanoscale to microscale
,”
Microfluid. Nanofluid.
20
,
162
(
2016
).
22.
M.
Elmaalouf
,
M.
Odziomek
,
S.
Duran
,
M.
Gayrard
,
M.
Bahri
,
C.
Tard
,
A.
Zitolo
,
B.
Lassalle-Kaiser
,
J.-Y.
Piquemal
, and
O.
Ersen
, “
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides
,”
Nat. Commun.
12
,
3935
(
2021
).
23.
C.
Perego
and
R.
Millini
, “
Porous materials in catalysis: Challenges for mesoporous materials
,”
Chem. Soc. Rev.
42
,
3956
(
2013
).
24.
S. L.
Suib
,
J.
Přech
,
J.
Čejka
,
Y.
Kuwahara
,
K.
Mori
, and
H.
Yamashita
, “
Some novel porous materials for selective catalytic oxidations
,”
Mater. Today
32
,
244
(
2020
).
25.
I. V.
Maggay
,
Y.
Chang
,
A.
Venault
,
G. V.
Dizon
, and
C.-J.
Wu
, “
Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation
,”
Sep. Purif. Technol.
259
,
117983
(
2021
).
26.
R. K.
Gupta
,
G. J.
Dunderdale
,
M. W.
England
, and
A.
Hozumi
, “
Oil/water separation techniques: A review of recent progresses and future directions
,”
J. Mater. Chem. A
5
,
16025
(
2017
).
27.
V.
Egorov
and
C.
O'Dwyer
, “
Architected porous metals in electrochemical energy storage
,”
Curr. Opin. Electrochem.
21
,
201
(
2020
).
28.
Z.
Liu
,
X.
Yuan
,
S.
Zhang
,
J.
Wang
,
Q.
Huang
,
N.
Yu
,
Y.
Zhu
,
L.
Fu
,
F.
Wang
, and
Y.
Chen
, “
Three-dimensional ordered porous electrode materials for electrochemical energy storage
,”
NPG Asia Mater.
11
,
12
(
2019
).
29.
G.
Jiang
,
R. A.
Senthil
,
Y.
Sun
,
T. R.
Kumar
, and
J.
Pan
, “
Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors
,”
J. Power Sources
520
,
230886
(
2022
).
30.
X.
Tong
,
L.
Ga
,
R.
Zhao
, and
J.
Ai
, “
Research progress on the applications of paper chips
,”
RSC Adv.
11
,
8793
(
2021
).
31.
W.
Khamcharoen
,
K.
Kaewjua
,
P.
Yomthiangthae
,
A.
Anekrattanasap
,
O.
Chailapakul
, and
W.
Siangproh
, “
Recent developments in microfluidic paper-based analytical devices for pharmaceutical analysis
,”
Curr. Top. Med. Chem.
22
,
2241
(
2022
).
32.
R.
Mu
,
N.
Bu
,
J.
Pang
,
L.
Wang
, and
Y.
Zhang
, “
Recent trends of microfluidics in food science and technology: Fabrications and applications
,”
Foods
11
,
3727
(
2022
).
33.
Y.
Liu
,
J.-W.
Shangguan
,
B.-Y.
Xu
,
X.-D.
Yu
,
J.-J.
Xu
, and
H.-Y.
Chen
, “
Abnormal liquid chasing effect in paper capillary enables versatile gradient generation on microfluidic paper analytical devices
,”
Anal. Chem.
92
,
2722
(
2020
).
34.
S.
Jahanshahi-Anbuhi
,
P.
Chavan
,
C.
Sicard
,
V.
Leung
,
S. Z.
Hossain
,
R.
Pelton
,
J. D.
Brennan
, and
C. D.
Filipe
, “
Creating fast flow channels in paper fluidic devices to control timing of sequential reactions
,”
Lab Chip
12
,
5079
(
2012
).
35.
C. K.
Camplisson
,
K. M.
Schilling
,
W. L.
Pedrotti
,
H. A.
Stone
, and
A. W.
Martinez
, “
Two-ply channels for faster wicking in paper-based microfluidic devices
,”
Lab Chip
15
,
4461
(
2015
).
36.
J.-W.
Shangguan
,
Y.
Liu
,
S.
Wang
,
Y.-X.
Hou
,
B.-Y.
Xu
,
J.-J.
Xu
, and
H.-Y.
Chen
, “
Paper capillary enables effective sampling for microfluidic paper analytical devices
,”
ACS Sens.
3
,
1416
(
2018
).
37.
D. L.
Giokas
,
G. Z.
Tsogas
, and
A. G.
Vlessidis
, “
Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels
,”
Anal. Chem.
86
,
6202
(
2014
).
38.
R. B.
Channon
,
M. P.
Nguyen
,
C. S.
Henry
, and
D. S.
Dandy
, “
Multilayered microfluidic paper-based devices: Characterization, modeling, and perspectives
,”
Anal. Chem.
91
,
8966
(
2019
).
39.
P.
Warren
, “
Vapor-liquid coexistence in many-body dissipative particle dynamics
,”
Phys. Rev. E
68
,
066702
(
2003
).
40.
K. P.
Santo
and
A. V.
Neimark
, “
Dissipative particle dynamics simulations in colloid and Interface science: A review
,”
Adv. Colloid Interface Sci.
298
,
102545
(
2021
).
41.
P.
Espanol
and
P. B.
Warren
, “
Perspective: Dissipative particle dynamics
,”
J. Chem. Phys.
146
,
150901
(
2017
).
42.
J.
Zhao
,
S.
Chen
,
K.
Zhang
, and
Y.
Liu
, “
A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications
,”
Phys. Fluids
33
,
112002
(
2021
).
43.
G.-Y.
He
,
H.-K.
Tsao
, and
Y.-J.
Sheng
, “
Imbibition dynamics in an open-channel capillary with holes
,”
J. Mol. Liq.
349
,
118117
(
2022
).
44.
K.-C.
Chu
,
H.-K.
Tsao
, and
Y.-J.
Sheng
, “
Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn's equation and extended menisci
,”
J. Colloid Interface Sci.
538
,
340
(
2019
).
You do not currently have access to this content.