The electroviscous effects are relevant in controlling and manipulating the fluid, thermal, and mass transport microfluidic processes. The existing research has mainly focused on the fixed contraction ratio ( d c, i.e., the area ratio of contraction to expansion) concerning the widely used contraction–expansion geometrical arrangement. This study has explored the influence of the contraction ratio ( d c) on the electroviscous flow of electrolyte liquids through the charged non-uniform microfluidic device. The numerical solution of the mathematical model (Poisson's, Nernst–Planck, and Navier–Stokes equations) using a finite element method yields the local flow fields. In general, the contraction ratio significantly affects the hydrodynamic characteristics of microfluidic devices. The total electrical potential and pressure drop maximally change by 1785% (from −0.2118 to −3.9929) and 2300% (from −0.0450 to −1.0815), respectively, as the contraction ratio ( d c) varies from 1 to 0.25. Furthermore, an electroviscous correction factor (Y, i.e., the ratio of apparent to physical viscosity) maximally enhances by 11.24% (at K = 8, S = 16 for 0.25 d c 1), 46.62% (at S = 16, d c = 0.75 for 20 K 2), 22.89% (at K = 2, d c = 0.5 for 4 S 16), and 46.99% (at K = 2, d c = 0.75 for 0 S 16). Thus, the electroviscous effect is obtained maximum at d c = 0.75 for the considered ranges of conditions. Finally, a pseudo-analytical model has been developed for a charged microfluidic device with variable contraction size ( 0.25 d c 1), based on the Hagen–Poiseuille flow in the uniform slit, which calculated the pressure drop within ±3% of the numerical results. The present numerical results may provide valuable guidelines for the performance optimization and design of reliable and essential microfluidic devices.

1.
A. M.
Foudeh
,
T. F.
Didar
,
T.
Veres
, and
M.
Tabrizian
, “
Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics
,”
Lab Chip
12
,
3249
3266
(
2012
).
2.
B.
Bruijns
,
A.
Van Asten
,
R.
Tiggelaar
, and
H.
Gardeniers
, “
Microfluidic devices for forensic dna analysis: A review
,”
Biosensors
6
,
41
(
2016
).
3.
X. J.
Li
and
Y.
Zhou
,
Microfluidic Devices for Biomedical Applications
(
Woodhead Publishing
,
2021
).
4.
G. T.
Vladisavljević
,
N.
Khalid
,
M. A.
Neves
,
T.
Kuroiwa
,
M.
Nakajima
,
K.
Uemura
,
S.
Ichikawa
, and
I.
Kobayashi
, “
Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
,”
Adv. Drug Delivery Rev.
65
,
1626
1663
(
2013
).
5.
N.-T.
Nguyen
,
S. A. M.
Shaegh
,
N.
Kashaninejad
, and
D.-T.
Phan
, “
Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology
,”
Adv. Drug Delivery Rev.
65
,
1403
1419
(
2013
).
6.
D.
Figeys
and
D.
Pinto
, “
Lab-on-a-chip: A revolution in biological and medical sciences
,”
Anal. Chem.
72
,
330 A
335 A
(
2000
).
7.
J.
Wu
,
M.
Dong
,
C.
Rigatto
,
Y.
Liu
, and
F.
Lin
, “
Lab-on-chip technology for chronic disease diagnosis
,”
npj Digital Med.
1
,
7
(
2018
).
8.
H.
Xue
,
K.
Ng
, and
J.
Wang
, “
Performance evaluation of the recuperative heat exchanger in a miniature joule–thomson cooler
,”
Appl. Therm. Eng.
21
,
1829
1844
(
2001
).
9.
I.
Stogiannis
,
A.
Mouza
, and
S.
Paras
, “
Efficacy of SiO2 nanofluids in a miniature plate heat exchanger with undulated surface
,”
Int. J. Therm. Sci.
92
,
230
238
(
2015
).
10.
M.
Bahiraei
,
S. M.
Naghibzadeh
, and
M.
Jamshidmofid
, “
Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles
,”
Energy Convers. Manage.
144
,
224
234
(
2017
).
11.
M.
Pan
,
H.
Wang
,
Y.
Zhong
,
T.
Fang
, and
X.
Zhong
, “
Numerical simulation of the fluid flow and heat transfer characteristics of microchannel heat exchangers with different reentrant cavities
,”
Int. J. Numer. Methods Heat Fluid Flow
29
,
4334
4348
(
2019
).
12.
A. A.
Imran
,
N. S.
Mahmoud
, and
H. M.
Jaffal
, “
Numerical and experimental investigation of heat transfer in liquid cooling serpentine mini-channel heat sink with different new configuration models
,”
Therm. Sci. Eng. Prog.
6
,
128
139
(
2018
).
13.
A. A.
Abdulqadur
,
H. M.
Jaffal
, and
D. S.
Khudhur
, “
Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel
,”
Int. J. Therm. Sci.
146
,
106111
(
2019
).
14.
H.
Tan
,
L.
Wu
,
M.
Wang
,
Z.
Yang
, and
P.
Du
, “
Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling
,”
Int. J. Heat Mass Transfer
129
,
681
689
(
2019
).
15.
D.
Zhuang
,
Y.
Yang
,
G.
Ding
,
X.
Du
, and
Z.
Hu
, “
Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling
,”
Int. J. Refrig.
116
,
108
118
(
2020
).
16.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic Press
,
1981
).
17.
D.
Li
, “
Electro-viscous effects on pressure-driven liquid flow in microchannels
,”
Colloids Surf. A
195
,
35
57
(
2001
).
18.
M. R.
Davidson
and
D. J. E.
Harvie
, “
Electroviscous effects in low Reynolds number liquid flow through a slit-like microfluidic contraction
,”
Chem. Eng. Sci.
62
,
4229
4240
(
2007
).
19.
F.
Pimenta
,
K.
Toda-Peters
,
A. Q.
Shen
,
M. A.
Alves
, and
S. J.
Haward
, “
Viscous flow through microfabricated axisymmetric contraction/expansion geometries
,”
Exp. Fluids
61
,
204
(
2020
).
20.
J.
Dhakar
and
R. P.
Bharti
, “
Electroviscous effects in charge-dependent slip flow of liquid electrolytes through a charged microfluidic device
,”
Chem. Eng. Process.-Process Intensif.
180
,
109041
(
2022
).
21.
S.
Sisavath
,
X.
Jing
,
C. C.
Pain
, and
R. W.
Zimmerman
, “
Creeping flow through an axisymmetric sudden contraction or expansion
,”
J. Fluids Eng.
124
,
273
278
(
2002
).
22.
R. P.
Bharti
,
D. J. E.
Harvie
, and
M. R.
Davidson
, “
Steady flow of ionic liquid through a cylindrical microfluidic contraction–expansion pipe: Electroviscous effects and pressure drop
,”
Chem. Eng. Sci.
63
,
3593
3604
(
2008
).
23.
R. P.
Bharti
,
D. J. E.
Harvie
, and
M. R.
Davidson
, “
Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel
,”
Int. J. Heat Fluid Flow
30
,
804
811
(
2009
).
24.
M. R.
Davidson
,
R. P.
Bharti
,
P.
Liovic
, and
D. J.
Harvie
, “
Electroviscous effects in low Reynolds number flow through a microfluidic contraction with rectangular cross-section
,”
Proc. World Acad. Sci., Eng. Technol.
30
,
256
260
(
2008
).
25.
M. R.
Davidson
,
R. P.
Bharti
, and
D. J. E.
Harvie
, “
Electroviscous effects in a Carreau liquid flowing through a cylindrical microfluidic contraction
,”
Chem. Eng. Sci.
65
,
6259
6269
(
2010
).
26.
J.
Dhakar
and
R. P.
Bharti
, “
Slip effects in ionic liquids flow through a contraction–expansion microfluidic device
,” in
Recent Trends in Fluid Dynamics Research
, edited by
R. P.
Bharti
and
K.
Gangawane
(
Springer
,
2022
), pp.
149
159
.
27.
J.
Dhakar
and
R. P.
Bharti
, “
Electroviscous effects in pressure-driven flow of electrolyte liquid through an asymmetrically charged non-uniform microfluidic device
,”
J. Taiwan Inst. Chem. Eng.
153
,
105230
(
2023
).
28.
D.
Burgreen
and
F.
Nakache
, “
Electrokinetic flow in ultrafine capillary slits
,”
J. Phys. Chem.
68
,
1084
1091
(
1964
).
29.
G. M.
Mala
,
D.
Li
,
C.
Werner
,
H.-J.
Jacobasch
, and
Y. B.
Ning
, “
Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects
,”
Int. J. Heat Fluid Flow
18
,
489
496
(
1997
).
30.
G. M.
Mala
,
D.
Li
, and
J. D.
Dale
, “
Heat transfer and fluid flow in microchannels
,”
Int. J. Heat Mass Transfer
40
,
3079
3088
(
1997
).
31.
M.-S.
Chun
and
H.-W.
Kwak
, “
Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson–Boltzmann field
,”
Korea-Australia Rheol. J.
15
,
83
90
(
2003
).
32.
C. L.
Ren
and
D.
Li
, “
Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels
,”
J. Colloid Interface Sci.
274
,
319
330
(
2004
).
33.
X.
Chen
,
K.
Toh
,
J.
Chai
, and
C.
Yang
, “
Developing pressure-driven liquid flow in microchannels under the electrokinetic effect
,”
Int. J. Eng. Sci.
42
,
609
622
(
2004
).
34.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
,”
J. Chem. Phys.
125
,
204716
(
2006
).
35.
X.
Xuan
, “
Streaming potential and electroviscous effect in heterogeneous microchannels
,”
Microfluid. Nanofluid.
4
,
457
462
(
2008
).
36.
L.
Wang
and
J.
Wu
, “
Flow behavior in microchannel made of different materials with wall slip velocity and electro-viscous effects
,”
Acta Mech. Sin.
26
,
73
80
(
2010
).
37.
J.
Jamaati
,
H.
Niazmand
, and
M.
Renksizbulut
, “
Pressure-driven electrokinetic slip-flow in planar microchannels
,”
Int. J. Therm. Sci.
49
,
1165
1174
(
2010
).
38.
C.
Zhao
and
C.
Yang
, “
On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows
,”
Colloids Surf. A
386
,
191
194
(
2011
).
39.
D.
Tan
and
Y.
Liu
, “
Combined effects of streaming potential and wall slip on flow and heat transfer in microchannels
,”
Int. Commun. Heat Mass Transfer
53
,
39
42
(
2014
).
40.
D.
Jing
and
B.
Bhushan
, “
Electroviscous effect on fluid drag in a microchannel with large zeta potential
,”
Beilstein J. Nanotechnol.
6
,
2207
2216
(
2015
).
41.
M. H.
Matin
and
W. A.
Khan
, “
Electrokinetic effects on pressure driven flow of viscoelastic fluids in nanofluidic channels with Navier slip condition
,”
J. Mol. Liqu.
215
,
472
480
(
2016
).
42.
D.
Jing
,
Y.
Pan
, and
X.
Wang
, “
The non-monotonic overlapping EDL-induced electroviscous effect with surface charge-dependent slip and its size dependence
,”
Int. J. Heat Mass Transfer
113
,
32
39
(
2017
).
43.
M. H.
Matin
, “
Electroviscous effects on thermal transport of electrolytes in pressure driven flow through nanoslit
,”
Int. J. Heat Mass Transfer
106
,
473
481
(
2017
).
44.
S. I.
Kim
and
S. J.
Kim
, “
Analysis of the electroviscous effects on pressure-driven flow in nanochannels using effective ionic concentrations
,”
Microfluid. Nanofluid.
22
,
12
(
2018
).
45.
A.
Sailaja
,
B.
Srinivas
, and
I.
Sreedhar
, “
Electroviscous effect of power law fluids in a slit microchannel with asymmetric wall zeta potentials
,”
J. Mech.
35
,
537
547
(
2019
).
46.
X.
Mo
and
X.
Hu
, “
Electroviscous effect on pressure driven flow and related heat transfer in microchannels with surface chemical reaction
,”
Int. J. Heat Mass Transfer
130
,
813
820
(
2019
).
47.
C.
Li
,
Z.
Liu
,
X.
Liu
,
Z.
Feng
, and
X.
Mo
, “
Combined effect of surface charge and boundary slip on pressure-driven flow and convective heat transfer in nanochannels with overlapping electric double layer
,”
Int. J. Heat Mass Transfer
176
,
121353
(
2021
).
48.
C.
Li
,
Z.
Liu
,
N.
Qiao
,
Z.
Feng
, and
Z. Q.
Tian
, “
The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge
,”
Electrochim. Acta
419
,
140421
(
2022
).
49.
D.
Banerjee
,
S.
Pati
, and
P.
Biswas
, “
Analysis of electroviscous effect and heat transfer for flow of non-Newtonian fluids in a microchannel with surface charge-dependent slip at high zeta potentials
,”
Phys. Fluids
34
,
112016
(
2022
).
50.
J.
Xing
and
Y.
Liu
, “
Combined electromagnetohydrodynamic flow in microchannels with consideration of the surface charge-dependent slip
,”
Phys. Scr.
98
,
025202
(
2023
).
51.
C.
Yang
,
D.
Li
, and
J. H.
Masliyah
, “
Modeling forced liquid convection in rectangular microchannels with electrokinetic effects
,”
Int. J. Heat Mass Transfer
41
,
4229
4249
(
1998
).
52.
L.
Ren
,
D.
Li
, and
W.
Qu
, “
Electro-viscous effects on liquid flow in microchannels
,”
J. Colloid Interface Sci.
233
,
12
22
(
2001
).
53.
J.-P.
Hsu
,
C.-Y.
Kao
,
S.
Tseng
, and
C.-J.
Chen
, “
Electrokinetic flow through an elliptical microchannel: Effects of aspect ratio and electrical boundary conditions
,”
J. Colloid Interface Sci.
248
,
176
184
(
2002
).
54.
C. L.
Rice
and
R.
Whitehead
, “
Electrokinetic flow in a narrow cylindrical capillary
,”
J. Phys. Chem.
69
,
4017
4024
(
1965
).
55.
S.
Levine
,
J.
Marriott
,
G.
Neale
, and
N.
Epstein
, “
Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials
,”
J. Colloid Interface Sci.
52
,
136
149
(
1975
).
56.
W. R.
Bowen
and
F.
Jenner
, “
Electroviscous effects in charged capillaries
,”
J. Colloid Interface Sci.
173
,
388
395
(
1995
).
57.
D.
Brutin
and
L.
Tadrist
, “
Modeling of surface-fluid electrokinetic coupling on the laminar flow friction factor in microtubes
,”
Microscale Thermophys. Eng.
9
,
33
48
(
2005
).
58.
D.
Jing
and
Y.
Pan
, “
Electroviscous effect and convective heat transfer of pressure-driven flow through microtubes with surface charge-dependent slip
,”
Int. J. Heat Mass Transfer
101
,
648
655
(
2016
).
59.
J. D.
Berry
,
M. R.
Davidson
,
R. P.
Bharti
, and
D. J. E.
Harvie
, “
Effect of wall permittivity on electroviscous flow through a contraction
,”
Biomicrofluidics
5
,
044102
(
2011
).
60.
D. E.
Goldsack
and
R.
Franchetto
, “
The viscosity of concentrated electrolyte solutions. i. concentration dependence at fixed temperature
,”
Can. J. Chem.
55
,
1062
1072
(
1977
).
61.
F.
Rey
,
M. A.
Ferreira
,
P.
Facal
, and
A. A. S. C.
Machado
, “
Effect of concentration, pH, and ionic strength on the viscosity of solutions of a soil fulvic acid
,”
Can. J. Chem.
74
,
295
299
(
1996
).
62.
S. I.
Wong
,
H.
Lin
,
J.
Sunarso
,
B. T.
Wong
, and
B.
Jia
, “
Optimization of ionic-liquid based electrolyte concentration for high-energy density graphene supercapacitors
,”
Appl. Mater. Today
18
,
100522
(
2020
).
63.
F.
Philippi
,
D.
Rauber
,
K. L.
Eliasen
,
N.
Bouscharain
,
K.
Niss
,
C. W. M.
Kay
, and
T.
Welton
, “
Pressing matter: Why are ionic liquids so viscous?
,”
Chem. Sci.
13
,
2735
2743
(
2022
).
64.
D. J.
Harvie
,
C. J.
Biscombe
, and
M. R.
Davidson
, “
Microfluidic circuit analysis. I. Ion current relationships for thin slits and pipes
,”
J. Colloid Interface Sci.
365
,
1
15
(
2012
).
65.
M. R.
Davidson
,
J. D.
Berry
,
R.
Pillai
, and
D. J.
Harvie
, “
Numerical simulation of two-fluid flow of electrolyte solution with charged deforming interfaces
,”
Appl. Math. Modell.
40
,
1989
2001
(
2016
).
66.
J.
Dhakar
and
R. P.
Bharti
, “
CFD analysis of electroviscous effects in electrolyte liquid flow through heterogeneously charged uniform microfluidic device
,” arXiv:2312.16032 (
2023
).
67.
J.
Dhakar
and
R. P.
Bharti
, “
CFD analysis of electroviscous effects in electrolyte liquid flow through heterogeneously charged non-uniform microfluidic device
,” arXiv:2312.16053 (
2023
).
68.
L.
Zhongwu
,
M.
Rahul Prasanna
,
L.
Yuhao
,
Y.
Yun-Chiao
,
Z.
Sidi
,
Z.
Yuliang
,
C.
Yunfei
,
B.
Daniel
, and
N.
Aleksandr
, “
Breakdown of the Nernst–Einstein relation in carbon nanotube porins
,”
Nat. Nanotechnol.
18
,
177
183
(
2023
).
69.
J. N.
Reddy
,
An Introduction to the Finite Element Method
(
McGraw-Hill
,
New York
,
2005
) Vol.
3
.
70.
E.
Dick
, “
Introduction to finite element methods in computational fluid dynamics
,” in
Computational Fluid Dynamics
(
Springer
,
2009
), pp.
235
274
.
You do not currently have access to this content.