Recently, it has been demonstrated that dielectric barrier discharge plasma actuators, which can be capable of generating a quasi-steady wall jet under the effect of a sinusoidal power supply, are well suitable for controlling the flow around the airfoil at a low Reynolds number. To uncover the controlling mechanism of plasma actuators, flow separation control over an SC (2)-0714 supercritical airfoil using an asymmetrical plasma actuator arranged at the leading edge of the airfoil, is studied at Reynolds number of 7.8 × 104. The stall angle of attack is delayed from 9° to 13°, and the maximum lift coefficient is increased by about 27%. In addition to the momentum injection to the boundary layer, which is one of the control mechanisms and can be achieved by the induced spanwise vortex of the plasma actuator, the closed recirculation region, which is similar to superimposing a hump on the leading edge of the airfoil, is another control mechanism, leading to an increase in the effective camber of the airfoil. The localized recirculation zone, which is created by the plasma actuator and modifies the leading-edge aero-shaping and results in the enhancement of the lift coefficient, is first observed, and this effect of the plasma actuator is called the virtual leading-edge aero-shaping.

1.
X. Y.
Ma
,
X. A.
Gong
, and
N.
Jiang
, “
Experimental study of vortex formation in pulsating jet flow by time-resolved particle image velocimetry
,”
Phys. Fluids
34
,
035105
(
2022
).
2.
X. S.
Meng
,
H.
Hu
,
X.
Yan
,
F.
Liu
, and
S.
Luo
, “
Lift improvements using duty-cycled plasma actuation at low Reynolds numbers
,”
Aerosp. Sci. Technol.
72
,
123
133
(
2018
).
3.
L. H.
Feng
,
T. N.
Jukes
, and
K. S.
Choi
, “
Flow control over a NACA 0012 airfoil using dielectric barrier discharge plasma actuator with a Gurney flap
,”
Exp. Fluids
52
,
1533
1546
(
2012
).
4.
D. L.
Gao
,
H.
Meng
,
Y. W.
Huang
,
G. B.
Chen
, and
W. L.
Chen
, “
Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points
,”
Phys. Fluids
33
,
047101
(
2021
).
5.
J. Y.
Yu
,
J. N.
Yu
,
F.
Chen
, and
C.
Wang
, “
Numerical study of tip leakage flow control in turbine cascades using the DBD plasma model improved by the parameter identification method
,”
Aerosp. Sci. Technol.
84
,
856
864
(
2019
).
6.
H.
Du
,
Z. W.
Shi
,
K. M.
Cheng
,
D. C.
Wei
,
L.
Zheng
,
D. J.
Zhou
,
H. B.
He
,
J. K.
Yao
, and
C. J.
He
, “
Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator
,”
Appl. Phys. Lett.
108
,
244105
(
2016
).
7.
A.
Altıntaş
,
L.
Davidson
, and
S.-H.
Peng
, “
Direct numerical simulation of drag reduction by spanwise oscillating dielectric barrier discharge plasma force
,”
Phys. Fluids
32
,
075101
(
2020
).
8.
M.
Sato
,
K.
Asada
,
T.
Nonomura
,
H.
Aono
,
A.
Yakeno
, and
K.
Fujii
, “
Mechanisms for turbulent separation control using plasma actuator at Reynolds number of 1.6 × 106
,”
Phys. Fluids
31
,
095107
(
2019
).
9.
G. J.
Huang
,
Y. T.
Dai
,
C.
Yang
,
Y.
Wu
, and
Y. J.
Xia
, “
Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number
,”
Phys. Fluids
33
,
043603
(
2021
).
10.
J. G.
Zheng
,
Y. D.
Cui
, and
B. C.
Khoo
, “
A note on supersonic flow control with nanosecond plasma actuator
,”
Phys. Fluids
30
,
040907
(
2018
).
11.
G. Z.
Li
,
H. J.
Zhang
, and
W. W.
Yan
, “
Control of the coherent structure dynamics of a film cooling flow by plasma aerodynamic actuation
,”
Int. J. Heat Mass Transfer
137
,
434
445
(
2019
).
12.
K.
Kinefuchi
,
A. Y.
Starikovskiy
, and
R. B.
Miles
, “
Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation
,”
Phys. Fluids
30
,
106105
(
2018
).
13.
V.
Narayanaswamy
,
L. L.
Raja
, and
N. T.
Clemens
, “
Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator
,”
Phys. Fluids
24
,
076101
(
2012
).
14.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
J.
Chen
,
G. Y.
Zhao
,
M.
Tian
, and
H. J.
Xu
, “
Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer
,”
Phys. Fluids
31
,
091701
(
2019
).
15.
Y.
Zhou
,
Z. X.
Xia
,
Z. B.
Luo
,
L.
Wang
, and
X.
Deng
, “
Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial
,”
Chin. J. Aeronaut.
31
(
12
),
2234
2247
(
2018
).
16.
H. H.
Zong
,
Z.
Su
,
H.
Liang
, and
Y.
Wu
, “
Experimental investigation and reduced-order modeling of plasma jets in a turbulent boundary layer for skin-friction drag reduction
,”
Phys. Fluids
34
,
085133
(
2022
).
17.
Y. F.
Zhu
,
Y.
Wu
,
B.
Wei
,
H. J.
Xu
,
H.
Liang
,
M.
Jia
,
H. M.
Song
, and
Y. H.
Li
, “
Nanosecond-pulsed dielectric barrier discharge-based plasma-assisted anti-icing: Modeling and mechanism analysis
,”
J. Phys. D: Appl. Phys.
53
,
145205
(
2020
).
18.
X. K.
Che
,
W. S.
Nie
,
T.
Shao
, and
X. H.
Tian
, “
Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air
,”
Phys. Plasmas
21
,
043508
(
2014
).
19.
L. J.
Wang
,
C. W.
Wong
,
Z. Y.
Lu
,
Z.
Wu
, and
Y.
Zhou
, “
Novel sawtooth dielectric barrier discharge plasma actuator for flow separation control
,”
AIAA J.
55
(
4
),
1405
1416
(
2017
).
20.
H. H.
Zong
,
T. V.
Pelt
, and
M.
Kotsonis
, “
Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number
,”
Exp. Fluids
59
,
169
(
2018
).
21.
C. L.
Kelley
,
P. O.
Bowles
,
J.
Cooney
,
C.
He
,
T. C.
Corke
,
B. A.
Osborne
,
J. S.
Silkey
, and
J.
Zehnle
, “
Leading edge separation control using alternating-current and nanosecond-pulse plasma actuators
,”
AIAA J.
52
(
9
),
1871
1884
(
2014
).
22.
N.
Benard
,
L. N.
Cattafesta
,
E.
Moreau
,
J.
Griffin
, and
J. P.
Bonnet
, “
On the benefits of hysteresis effects for closed-loop separation control using plasma actuation
,”
Phys. Fluids
23
,
083601
(
2011
).
23.
L. H.
Feng
,
K. S.
Choi
, and
J. J.
Wang
, “
Flow control over an airfoil using virtual Gurney flaps
,”
J. Fluid Mech.
767
,
595
626
(
2015
).
24.
X.
Zhang
,
H.
Yong
,
X. N.
Wang
,
W. B.
Wang
,
W. B.
Tang
, and
H. X.
Li
, “
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
,”
Chin. J. Aeronaut.
29
(
5
),
1237
1246
(
2016
).
25.
C.
He
,
T. C.
Corke
, and
M. P.
Patel
, “
Plasma flaps and slats: An application of weakly ionized plasma actuators
,”
AIAA J.
46
(
3
),
864
873
(
2009
).
26.
S. N.
Chen
,
Z. W.
Shi
,
G.
Xi
,
Z. J.
Zhao
,
Z.
Chen
, and
Q. B.
Sun
, “
Study of the transient flow structures generated by a pulsed nanosecond plasma actuator on a delta wing
,”
Phys. Fluids
34
,
107111
(
2022
).
27.
P. Y.
Yang
,
X.
Zhang
, and
T. R.
Yue
, “
A comparative study on post-stall flow separation control mechanism of steady and unsteady plasma actuators
,”
Phys. Fluids
34
,
057105
(
2022
).
28.
M.
Sato
,
K.
Otsuka
,
K.
Asada
,
H.
Aono
,
T.
Nonomura
, and
K.
Fujii
, “
Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106
,”
Phys. Fluids
32
,
025102
(
2020
).
29.
K.
Adamiak
, “
Quasi-stationary modeling of the DBD plasma flow control around airfoil
,”
Phys. Fluids
32
,
085108
(
2020
).
30.
H. C.
Yu
and
J. G.
Zheng
, “
Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators
,”
Phys. Fluids
32
,
035103
(
2020
).
31.
D.
Chen
,
K.
Asada
,
S.
Sekimoto
,
K.
Fujii
, and
H.
Nishida
, “
A high-fidelity body-force modeling approach for plasma-based flow control simulations
,”
Phys. Fluids
33
,
037115
(
2021
).
32.
S.
Yadala
,
N.
Benard
,
M.
Kotsonis
, and
E.
Moreau
, “
Effect of dielectric barrier discharge plasma actuators on vortical structures in a mixing layer
,”
Phys. Fluids
32
,
124111
(
2020
).
33.
Z. J.
Zhao
,
Z. B.
Luo
,
X.
Deng
,
S. Q.
Li
,
J. Y.
Zhang
, and
J. F.
Liu
, “
Influences of trailing-edge synthetic jets on longitudinal aerodynamic characteristics of a flying wing aircraft
,”
Phys. Fluids
34
,
127115
(
2022
).
34.
W. W.
Hui
,
X. S.
Meng
,
H. X.
Li
, and
F.
Liu
, “
Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation
,”
Phys. Fluids
34
,
123613
(
2022
).
35.
T. N.
Jukes
and
K. S.
Choi
, “
Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma
,”
Phys. Fluids
21
,
094106
(
2009
).
36.
H. D.
Zhang
,
Y.
Wu
,
Y. H.
Li
,
X. J.
Yu
, and
B. J.
Liu
, “
Control of compressor tip leakage flow using plasma actuation
,”
Aerosp. Sci. Technol.
86
,
244
255
(
2019
).
37.
X.
Geng
,
W. L.
Zhang
,
Z. W.
Shi
,
Z.
Li
,
Q. J.
Sun
, and
Z. K.
Sun
, “
Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects
,”
Phys. Fluids
33
,
067113
(
2021
).
38.
H. S.
Yang
,
H.
Liang
,
C. B.
Zhang
,
Y.
Wu
,
Z. H.
Li
,
H. H.
Zong
,
Z.
Su
,
B.
Yang
,
Y. K.
Kong
,
D. S.
Zhang
, and
Y. H.
Li
, “
An experimental study on the stability of hypersonic plate boundary layer regulated by a plasma actuation array
,”
Phys. Fluids
35
,
026112
(
2023
).
39.
M. X.
Tang
,
Y.
Wu
,
H. H.
Zong
,
S. G.
Guo
,
H.
Liang
, and
Y. H.
Luo
, “
Experimental investigation on compression ramp shock wave/boundary layer interaction control using plasma actuator array
,”
Phys. Fluids
33
,
066101
(
2021
).
40.
R.
Mittal
and
P.
Rampunggoon
, “
On the virtual aeroshaping effect of synthetic jets
,”
Phys. Fluids
14
,
1533
1536
(
2002
).
41.
L. H.
Feng
and
J. J.
Wang
, “
The virtual aeroshaping enhancement by synthetic jets with variable suction and blowing cycles
,”
Phys. Fluids
26
,
014105
(
2014
).
42.
F. J.
Chen
and
G. B.
Beeler
, “
Virtual shaping of a two-dimensional NACA 0015 airfoil using synthetic jet actuator
,” in
1st AIAA Flow Control Conference
(
AIAA
,
2002
).
43.
X.
Zhang
,
H. X.
Li
,
Y.
Huang
,
K.
Tang
, and
W. B.
Wang
, “
Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge plasma actuator
,”
Chin. J. Aeronaut.
32
(
5
),
1190
1203
(
2019
).
44.
B. R.
Zheng
,
M.
Xue
,
X. Z.
Ke
,
C.
Ge
,
Y. S.
Wang
,
F.
Liu
, and
S. J.
Luo
, “
Unsteady vortex structure induced by a trielectrode sliding discharge plasma actuator
,”
AIAA J.
57
,
1
5
(
2019
).
45.
B. K.
Mishra
and
P. K.
Panigrahi
, “
Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode
,”
Phys. Fluids
22
,
091105
(
2017
).
46.
M.
Xue
,
C.
Gao
,
H. D.
Xi
, and
F.
Liu
, “
Vortices induced by a dielectric barrier discharge plasma actuator under burst-mode actuation
,”
AIAA J.
58
,
2428
2441
(
2020
).
47.
H. Y.
Hu
,
X. S.
Meng
,
J. S.
Cai
,
W. W.
Zhou
,
Y.
Liu
, and
H.
Hu
, “
Optimization of dielectric barrier discharge plasma actuators for icing control
,”
J. Aircraft
57
(
2
),
383
387
(
2020
).
48.
R.
Whalley
and
K. S.
Choi
, “
Starting, traveling, and colliding vortices: Dielectric-barrier-discharge plasma in quiescent air
,”
Phys. Fluids
22
,
091105
(
2010
).
49.
T. N.
Jukes
and
K. S.
Choi
, “
Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma
,”
Phys. Fluids
21
,
084103
(
2009
).
50.
X.
Zhang
and
H. H.
Zong
, “
Vortex shedding frequency scaling of coherent structures induced by a plasma actuator
,”
AIAA J.
60
(
2
),
1067
1076
(
2022
).
51.
R. D.
Whalley
and
K. S.
Choi
, “
The starting vortex in quiescent air induced by dielectric barrier discharge plasma
,”
J. Fluid Mech.
703
,
192
203
(
2012
).
52.
S. Y.
Zhou
,
W. S.
Nie
,
X. K.
Che
,
Q. Y.
Chen
, and
Z.
Zhang
, “
Influence of equivalence ratio on plasma assisted detonation initiation by alternating current dielectric barrier discharge under rich burn condition
,”
Aerosp. Sci. Technol.
69
,
504
512
(
2017
).
53.
J. S.
Cai
,
Y.
Tian
,
X. S.
Meng
,
X.
Han
,
D.
Zhang
, and
H.
Hu
, “
An experimental study of icing control using DBD plasma actuator
,”
Exp. Fluids
58
,
102
(
2017
).
54.
H. X.
Huang
,
H. J.
Tan
,
Y. J.
Guo
,
S.
Sun
,
Z. K.
Lin
,
J.
Cai
,
Y. C.
Zhang
, and
X. M.
He
, “
Flow field induced by a plasma synthetic jet actuator with low exit inclination angle under low ambient pressure
,”
Aerosp. Sci. Technol.
105
,
106018
(
2020
).
55.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
You do not currently have access to this content.