In this paper, we present a mathematical model aimed at describing both the effusive and relaxing phase of pancakelike lava domes on the Venus surface. Our model moves from the recent paper by Quick et al. [“New approaches to inferences for steep-sided domes on Venus,” J. Volcanol. Geotherm. Res. 319, 93–105 (2016)] but generalizes it under several respects. Indeed, we consider a temperature field, playing a fundamental role in the flow evolution, whose dynamics is governed by the heat equation. In particular, we suggest that the main mechanism that drives cooling is radiation at the dome surface. We obtain a generalized form of the equation describing the dome shape, where the dependence of viscosity on temperature is taken into account. Still following Quick et al. [“New approaches to inferences for steep-sided domes on Venus,” J. Volcanol. Geothermal Res. 319, 93–105 (2016)], we distinguish an isothermal relaxing phase preceded by a non-isothermal (cooling) effusive phase, but the fluid mechanical model, developed in an axisymmetric thin-layer approximation, takes into account both shear thinning and thermal effects. In both cases (relaxing and effusive phase), we show the existence of self-similar solutions. In particular, this allows to obtain a likely scenario of the volumetric flow rate which originated this kind of domes. Indeed, the model predicts a time varying discharge, which is maximum at the beginning of the formation process and decreases until vanishing when the effusive phase is over. The model, in addition to fitting well the dome shape, suggests a possible forming scenario, which may help the largely debated questions about the emplacement and lava composition of these domes.

1.
L. C.
Quick
,
L. S.
Glaze
,
S. M.
Baloga
, and
E. R.
Stofan
, “
New approaches to inferences for steep-sided domes on Venus
,”
J. Volcanol. Geotherm. Res.
319
,
93
105
(
2016
).
2.
N. S.
Bagdassarov
, “
Non-Newtonian and viscoelastic properties of lava flows
,”
AGU Fall Meeting Abstracts
(
NASA
,
2004
), pp.
V51D
V504
.
3.
I.
Sonder
, “
Non-Newtonian properties of magmatic melts
,” Ph.D. thesis (
Universität Würzburg
,
2010
).
4.
M.
Dragoni
, “
Modelling the rheology and cooling of lava flows
,” in
Active Lavas
(
Routledge
,
2022
), pp.
235
261
.
5.
I.
Sonder
,
B.
Zimanowski
, and
R.
Büttner
, “
Non-Newtonian viscosity of basaltic magma
,”
Geophys. Res. Lett.
33
(
2
),
L02303
, https://doi.org/10.1029/2005GL024240 (
2006
).
6.
H. E.
Huppert
, “
The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,”
J. Fluid Mech.
121
,
43
58
(
1982
).
7.
H. E.
Huppert
,
J. B.
Shepherd
,
H.
Sigurdsson
, and
R. S. J.
Sparks
, “
On lava dome growth with application to the 1979 lava extrusion of the Soufière of St.Vincent
,”
J. Volcanol. Geotherm. Res.
14
,
199
222
(
1982
).
8.
H. E.
Huppert
, “
Gravity currents: A personal perspective
,”
J. Fluid Mech.
554
,
299
322
(
2006
).
9.
T. B.
Benjamin
, “
Gravity currents and related phenomena
,”
J. Fluid Mech.
31
,
209
248
(
1968
).
10.
G.
Algwauish
and
S.
Naire
, “
The thermo-viscous fingering instability of a cooling spreading liquid dome
,”
Phys. Fluids
35
(
11
),
112109
(
2023
).
11.
N. J.
Balmforth
and
R. V.
Craster
, “
Dynamics of cooling domes of viscoplastic fluid
,”
J. Fluid Mech.
422
,
225
248
(
2000
).
12.
N. J.
Balmforth
,
A. S.
Burbidge
,
R. V.
Craster
,
J.
Salzig
, and
A.
Shen
, “
Visco-plastic models of isothermal lava domes
,”
J. Fluid Mech.
403
,
37
65
(
2000
).
13.
N. J.
Balmforth
,
R. V.
Craster
, and
R.
Sassi
, “
Shallow viscoplastic flow on an inclined plane
,”
J. Fluid Mech.
470
,
1
29
(
2002
).
14.
R. W.
Griffiths
, “
The dynamics of lava flows
,”
Annu. Rev. Fluid Mech.
32
(
1
),
477
518
(
2000
).
15.
D.
Bercovici
, “
A theoretical model of cooling viscous gravity currents with temperature-dependent viscosity
,”
Geophys. Res. Lett.
21
(
12
),
1177
1180
, https://doi.org/10.1029/94GL01124 (
1994
).
16.
M.
Dragoni
,
I.
Borsari
, and
A.
Tallarico
, “
A model for the shape of lava flow fronts
,”
J. Geophys. Res.
110
(
B9
),
B09203
, https://doi.org/10.1029/2004JB003523 (
2005
).
17.
E. R.
Stofan
,
W. S.
Anderson
,
D. A.
Crown
, and
J. J.
Plaut
, “
Emplacement and composition of steep-sided domes on Venus
,”
J. Geophys. Res.
105
(
E11
),
26757
26771
, https://doi.org/10.1029/1999JE001206 (
2000
).
18.
S. E. H.
Sakimoto
and
M. T.
Zuber
, “
The spreading of variable-viscosity axisymmetric radial gravity currents: Applications to the emplacement of Venusian ‘pancake’ domes
,”
J. Fluid Mech.
301
,
65
77
(
1995
).
19.
N. T.
Bridges
, “
Submarine analogs to Venusian pancake domes
,”
Geophys. Res. Lett.
22
(
20
),
2781
2784
, https://doi.org/10.1029/95GL02662 (
1995
).
20.
N. T.
Bridges
, “
Ambient effect on basalt and rhyolite lavas under Venusian, subaerial and subacqueous conditions
,”
J. Geophys. Res.
102
(
E4
),
9243
9255
, https://doi.org/10.1029/97JE00390 (
1997
).
21.
M. E.
Borrelli
,
J. G.
O'Rourke
,
S. E.
Smrekar
, and
C. M.
Ostberg
, “
A global survey of lithospheric flexure at steep-sided domical volcanoes on Venus reveals intermediate elastic thicknesses
,”
J. Geophys. Res.: Planets
126
(
7
),
e2020JE006756
, https://doi.org/10.1029/2020JE006756 (
2021
).
22.
L. C.
Quick
,
L. S.
Glaze
, and
S. M.
Baloga
, “
Venusian steep-sided domes: Essential exploration targets for constraining the range of volcanic emplacement conditions
,” in
Workshop on Venus Exploration Targets
(
The Venus Exploration Analysis Group
,
2014
), Vol.
1781
, p.
6014
.
23.
M. A.
Ivanov
, “
Stratigraphic and geographic distribution of steep-sided domes on Venus: Preliminary results from regional
,”
J. Geophys. Res.
104
,
18907
18924
, https://doi.org/10.1029/1999JE001039 (
1999
).
24.
D. K.
Smith
, “
Comparison of the shapes and sizes of seafloor volcanoes on earth and ‘pancake’ domes on Venus
,”
J. Volcanol. Geotherm. Res.
73
(
1
),
47
64
(
1996
).
25.
A. L.
Gleason
,
R. R.
Herrick
, and
J. M.
Byrnes
, “
Analysis of Venusian steep-sided domes utilizing stereo-derived topography
,”
J. Geophys. Res.
115
,
E06004
, http://dx.doi.org/10.1029/2009JE003431 (
2010
).
26.
B.
Pavri
,
J. W.
Head
,
K. B.
Klose
, and
L.
Wilson
, “
Steep-sided domes on Venus: Characteristics, geologic setting, and eruption conditions from Magellan data
,”
J. Geophys. Res.
97
(
E8
),
13445
13478
, https://doi.org/10.1029/92JE01162 (
1992
).
27.
D.
McKenzie
,
P. G.
Ford
,
F.
Liu
, and
G. H.
Pettengill
, “
Pancakelike domes on Venus
,”
J. Geophys. Res.
97
(
E10
),
15967
15976
, https://doi.org/10.1029/92JE01349 (
1992
).
28.
C. E.
Harnett
,
M. J.
Heap
, and
M. E.
Thomas
, “
A toolbox for identifying the expression of dome-forming volcanism on exoplanets
,”
Planet. Space Sci.
180
,
104762
(
2020
).
29.
E.
Cottrell
, “
Global distribution of active volcanoes
,” in
Volcanic Hazards, Risks and Disasters
(
Elsevier
,
2015
), pp.
1
16
.
30.
J. H.
Fink
,
N. T.
Bridges
, and
R. E.
Grimm
, “
Shapes of venusian ‘pancake’ domes imply episodic emplacement and silicic composition
,”
Geophys. Res. Lett.
20
(
4
),
261
264
, https://doi.org/10.1029/92GL03010 (
1993
).
31.
D.
Bercovici
and
Y.
Ricard
, “
Plate tectonics, damage and inheritance
,”
Nature
508
(
7497
),
513
516
(
2014
).
32.
S.
Mikhail
and
D. A.
Sverjensky
, “
Nitrogen speciation in upper mantle fluids and the origin of earth's nitrogen-rich atmosphere
,”
Nat. Geosci.
7
(
11
),
816
819
(
2014
).
33.
J. W.
Head
,
D. B.
Campbell
,
C.
Elachi
,
J. E.
Guest
,
D. P.
McKenzie
,
R. S.
Saunders
,
G. G.
Schaber
, and
G.
Schubert
, “
Venus volcanism: Initial analysis from magellan data
,”
Science
252
(
5003
),
276
288
(
1991
).
34.
S.
Hensley
and
S.
Shaffer
, “
Automatic dem generation using Magellan stereo data
,” in
Proceedings of IGARSS '94 – 1994 IEEE International Geoscience and Remote Sensing Symposium
(
IEEE
,
1994
), Vol.
3
, pp.
1470
1472
.
35.
A. R.
McBirney
and
T.
Murase
, “
Rheological properties of magmas
,”
Annu. Rev. Earth Planet. Sci.
12
(
1
),
337
357
(
1984
).
36.
K. R.
Rajagopal
,
G.
Saccomandi
, and
L.
Vergori
, “
Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane
,”
J. Fluid Mech.
706
,
173
189
(
2012
).
37.
P.
Hartlieb
,
M.
Toifl
,
F.
Kuchar
,
R.
Meisels
, and
T.
Antretter
, “
Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution
,”
Miner. Eng.
91
,
34
41
(
2016
).
38.
W. L.
Romine
,
A. G.
Whittington
,
P. I.
Nabelek
, and
A. M.
Hofmeister
, “
Thermal diffusivity of rhyolitic glasses and melts: Effects of temperature, crystals and dissolved water
,”
Bull. Volcanol.
74
,
2273
2287
(
2012
).
39.
J. V.
Smith
, “
Shear thickening dilatancy in crystal-rich flows
,”
J. Volcanol. Geotherm. Res.
79
(
1–2
),
1
8
(
1997
).
40.
S. L.
Webb
and
D. B.
Dingwell
, “
Non-Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite
,”
J. Geophys. Res.
95
(
B10
),
15695
15701
, https://doi.org/10.1029/JB095iB10p15695 (
1990
).
41.
L.
Liu
and
R. P.
Lowell
, “
Modeling heat transfer from a convecting, crystallizing, replenished silicic magma chamber at an oceanic spreading center
,”
Geochem. Geophys. Geosyst.
12
(
9
),
Q09010
(
2011
).
42.
M. R.
James
,
N.
Bagdassarov
,
K.
Müller
, and
H.
Pinkerton
, “
Viscoelastic behaviour of basaltic lavas
,”
J. Volcanol. Geotherm. Res.
132
(
2–3
),
99
113
(
2004
).
43.
C. E.
Lesher
and
F. J.
Spera
, “
Thermodynamic and transport properties of silicate melts and magma
,” in
The Encyclopedia of Volcanoes
(
Elsevier
,
2015
), pp.
113
141
.
44.
C. H.
Donaldson
, “
Calculated diffusion coefficients and the growth rate of olivine in a basalt magma
,”
Lithos
8
(
2
),
163
174
(
1975
).
45.
S.
Diniega
,
S. E.
Smrekar
,
S.
Anderson
, and
E. R.
Stofan
, “
The influence of temperature-dependent viscosity on lava flow dynamics
,”
J. Geophys. Res.: Earth Surf.
118
(
3
),
1516
1532
(
2013
).
46.
H.
Blatt
,
R.
Tracy
, and
B.
Owens
,
Petrology: Igneous, Sedimentary and Metamorphic
, 3rd ed. (
Freeman
,
New York
,
2006
).
47.
B.
Clarke
,
E. S.
Calder
,
F.
Dessalegn
,
K.
Fontijn
,
J. A.
Cortés
,
M.
Naylor
,
I.
Butler
,
W.
Hutchison
, and
G.
Yirgu
, “
Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions
,”
Nat. Commun.
10
(
1
),
2010
(
2019
).
48.
M. W.
Loewen
,
IN.
Bindeman
, and
O. E.
Melnik
, “
Eruption mechanisms and short duration of large rhyolitic lava flows of Yellowstone
,”
Earth Planet. Sci. Lett.
458
,
80
91
(
2017
).
49.
S.
Blake
and
B. C.
Bruno
, “
Modelling the emplacement of compound lava flows
,”
Earth Planet. Sci. Lett.
184
(
1
),
181
197
(
2000
).
50.
D. K.
Babu
and
M. T.
Van Genuchten
, “
A similarity solution to a nonlinear diffusion equation of the singular type: A uniformly valid solution by perturbations
,”
Quart. Appl. Math.
37
(
1
),
11
21
(
1979
).
51.
D. K.
Babu
and
M. T.
Van Genuchten
, “
A perturbation solution of the nonlinear Boussinesq equation: The case of constant injection into a radial aquifer
,”
J. Hydrol.
48
(
3–4
),
269
280
(
1980
).
You do not currently have access to this content.