In this paper, based on the airflow improvement mechanism of dragonfly wing veins, a vortex generator is designed at the leading edge of the suction surface to improve the flow condition of compressor cascades. The influence of the placement positions and geometric dimensions of the vortex generators on the flow field structure and aerodynamic performance is investigated by numerical simulation. The research reveals that vortex generators at the leading edge of the suction surface can generate induced vortices near the end wall, suppressing the accumulation of low-energy fluid in the corner region. This results in a backward shift of the separation initiation point, a reduction in the corner separation region along the pitch direction, and a reduction in flow loss. The vortex generators exhibit favorable characteristics with positive incidence angles. However, when the incidence angle is below the minimum loss incidence angle, the vortex generators increase the flow losses of the cascade. Optimum performance is achieved when the vortex generators are positioned at the start of the corner separation. The flow control influence initially increases and then decreases as the height of the vortex generators increases. Similarly, the control impact is enhanced and then weakened as the placement position moves away from the suction surface. The flow losses decrease by 10.3% when the vortex generators are placed at the junction between the end wall recirculation and the mainstream region at a height equal to 2% of the blade height.

1.
Y. S.
Yoon
,
S. J.
Song
, and
H. W.
Shin
, “
Influence of flow coefficient, stagger angle, and tip clearance on tip vortex in axial compressors
,”
J. Fluids Eng.
128
(
6
),
1274
1280
(
2006
).
2.
C.
Hah
and
J.
Loellbach
, “
Development of hub corner stall and its influence on the performance of axial compressor blade rows
,”
J. Turbomach.
121
(
1
),
67
77
(
1999
).
3.
J. D.
Denton
, “
Loss mechanisms in turbomachines
,”
J. Turbomach.
115
(
4
),
621
656
(
1993
).
4.
M.
Wang
,
X.
Lu
,
S.
Zhao
, and
Y.
Zhang
, “
Numerical investigations of vortex dynamics and loss generation in the corner separation region of a high subsonic compressor blade
,”
Phys. Fluids
35
(
2
),
025104
(
2023
).
5.
Z.
Wang
,
J.
Chang
,
Y.
Li
, and
C.
Kong
, “
Investigation of shock wave control by suction in a supersonic cascade
,”
Aerosp. Sci. Technol.
108
,
106382
(
2021
).
6.
J.
Lim
,
M.
Kim
,
S.
Kim
,
S.
Jee
, and
D.
Park
, “
Cost-effective and high-fidelity method for turbulent transition in compressible boundary layer
,”
Aerosp. Sci. Technol.
108
,
106367
(
2021
).
7.
C. T.
Dinh
,
M. W.
Heo
, and
K.-Y.
Kim
, “
Aerodynamic performance of transonic axial compressor with a casing groove combined with blade tip injection and ejection
,”
Aerosp. Sci. Technol.
46
,
176
187
(
2015
).
8.
M.
Zhang
,
Y.
Liu
,
M. C.
Zhang
,
B. X.
Mo
, and
J. G.
Yang
, “
Aerodynamic performance of tip injections for a winglet-shrouded linear turbine cascade
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, June 26–30, 2017, Charlotte, NC
(
ASME
,
New York
,
2017
).
9.
H.
Zhang
,
Y.
Wu
,
Y.
Li
,
X.
Yu
, and
B.
Liu
, “
Control of compressor tip leakage flow using plasma actuation
,”
Aerosp. Sci. Technol.
86
,
244
255
(
2019
).
10.
X.
Meng
,
H.
Hu
,
X.
Yan
,
F.
Liu
, and
S.
Luo
, “
Lift improvements using duty-cycled plasma actuation at low Reynolds numbers
,”
Aerosp. Sci. Technol.
72
,
123
133
(
2018
).
11.
H.
Zong
,
Y.
Wu
,
H.
Liang
,
Z.
Su
, and
J.
Li
, “
Experimental study on Q-learning control of airfoil trailing-edge flow separation using plasma synthetic jets
,”
Phys. Fluids
36
(
1
),
015101
(
2024
).
12.
H.
Liu
,
C.
Hu
,
X.
Shen
,
X.
Zhu
,
H.
Yang
, and
Z.
Du
, “
The aerodynamic optimization design of turbine cascade nonaxisymmetric endwall and the midgap influence assessment
,”
Proc. Inst. Mech. Eng., Part G
232
(
15
),
2760
2774
(
2018
).
13.
L.
Schäflein
,
J.
Janssen
,
H.
Brandies
,
P.
Jeschke
, and
S.
Behre
, “
Influence of purge flow injection on the performance of an axial turbine with three-dimensional airfoils and non-axisymmetric endwall contouring
,”
J. Turbomach.
145
(
6
),
061004
(
2022
).
14.
M.
Straccia
,
S.
Giannini
, and
V.
Gümmer
, “
Analysis of cavity leakage effects on coupled non-axisymmetric endwall-airfoil optimization in a low-speed compressor tandem stator
,” in
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, June 13–17, 2022, Rotterdam, Netherlands
(
ASME
,
2022
).
15.
Y.
Xue
,
Y.
Wu
,
Z.
Li
,
Z.
Zhang
, and
X.
Shi
, “
Flow mechanism of a highly loaded low pressure turbine cascade with integrated-optimized end wall contouring and root lean
,”
Phys. Fluids
36
(
1
),
014114
(
2024
).
16.
S.
Babu
and
S.
Anish
, “
Aerodynamic performance of profiled endwalls with upstream slot purge flow in a linear turbine cascade having pressure side separation
,”
Phys. Fluids
33
(
1
),
015119
(
2021
).
17.
K. N.
Kumar
and
M.
Govardhan
, “
Numerical study of effect of streamwise end wall fences on secondary flow losses in two dimensional turbine rotor cascade
,”
Eng. Appl. Comput. Fluid Mech.
4
(
4
),
580
592
(
2010
).
18.
Y.
Chen
,
L.
Yang
, and
J.
Zhong
, “
Numerical study on endwall fence with varying geometrical parameters in a highly-loaded compressor cascade
,”
Aerosp. Sci. Technol.
94
,
105390
(
2019
).
19.
H.
Yuan
,
Y.
Wu
,
S.
Zhou
,
M.
Wang
,
X.
Lu
, and
Y.
Zhang
, “
Non uniform height endwall fence optimization of a low-pressure turbine cascade
,”
Int. J. Mech. Sci.
250
,
108301
(
2023
).
20.
M.
Tang
,
D.
Jin
, and
X.
Gui
, “
Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades
,”
J. Therm. Sci.
26
(
1
),
1
10
(
2017
).
21.
M. E.
Deich
,
A. B.
Gubalev
, and
G. A.
Filippov
, “
A new method of profiling the guide vane cascades of turbine stages with small diameter-span ratio
,”
Teplienergetika
8
,
42
46
(
1962
).
22.
V.
Gümmer
,
U.
Wenger
, and
H.-P.
Kau
, “
Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors
,”
J. Turbomach.
123
(
1
),
40
48
(
2000
).
23.
F. K.
Lu
,
S. E.
James
, and
L.
Zhang
, “
Flow separation control and performance evaluation of an asymmetric diffuser using vortex generators
,”
Aerosp. Sci. Technol.
136
,
108237
(
2023
).
24.
A.
Cheawchan
,
M. A.
Mohamed
,
B. F.
Ng
, and
T. H.
New
, “
Flow structures of wishbone vortex generators and their interactions with a backward-facing ramp
,”
J. Aerosp. Eng.
36
(
1
),
04022120
(
2023
).
25.
H. D.
Taylor
, “
Summary Report on Vortex Generators
,”
Report No. R-05280-9
(
United Aircraft Corporation. Research Dept
,
1950
).
26.
C. H.
Law
,
A. J.
Wennerstrom
, and
W. A.
Buzzell
,
Aerospace Engineering and Manufacturing Meeting
(
SAE International
,
1976
).
27.
R.
Chima
, “
Computational modeling of vortex generators for turbomachinery
,” in
ASME Turbo Expo 2002: Power for Land, Sea, and Air, June 3–6, 2002, Amsterdam, The Netherlands
(
ASME
,
2002
).
28.
R.
Meyer
,
D.
Bechert
, and
W.
Hage
, “
Secondary flow control on compressor blades to improve the performance of axial turbomachines
,” in
5th European Turbomachinery Conference
, Czech Republic, Prague (
2003
), see https://www.researchgate.net/publication/224802028.
29.
A.
Hergt
,
R.
Meyer
, and
K.
Engel
, “
Experimental investigation of flow control in compressor cascades
,” in
ASME Turbo Expo 2006: Power for Land, Sea, and Air
, May 8–11, 2006, Barcelona, Spain (
2006
).
30.
A.
Hergt
,
R.
Meyer
, and
K.
Engel
, “
Effects of vortex generator application on the performance of a compressor cascade
,”
J. Turbomach.
135
(
2
),
021026
(
2013
).
31.
A. M.
Diaa
,
M. F.
El-Dosoky
,
M. A.
Ahmed
, and
O. E.
Abdel-Hafez
, “
Boundary layer control of an axial compressor cascade using nonconventional vortex generators
,” in
ASME 2015 International Mechanical Engineering Congress and Exposition, November 13–19, 2015, Houston, TX
(
ASME
,
2015
).
32.
J.
Hu
,
R.
Wang
,
P.
Wu
, and
F.
Li
, “
Synthetic separation control using vortex generator and slot jet in a high load compressor cascade
,”
J. Appl. Fluid Mech.
10
(
5
),
1305
1318
(
2017
).
33.
S.
Ma
,
W.
Chu
,
H.
Zhang
,
X.
Li
, and
H.
Kuang
, “
Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade
,”
Proc. Inst. Mech. Eng., Part A
233
(
3
),
309
323
(
2019
).
34.
S.
Ma
,
W.
Chu
,
H.
Zhang
,
S.
Yan
, and
Y.
Zhong
, “
Study of combined flow control strategies based on a quantitative analysis in a high-load compressor cascade
,”
Aerosp. Sci. Technol.
93
,
105346
(
2019
).
35.
J.
Li
and
L.
Ji
, “
Efficient design method for applying vortex generators in turbomachinery
,”
J. Turbomach.
141
(
8
),
081005
(
2019
).
36.
Y.
Zhao
,
J.
Wu
, and
J.
Zhou
, “
Effect of dynamic microvortex generator on SWBLI based on FD-06 wind tunnel
,”
J. Aerosp. Eng.
36
(
1
),
04022106
(
2023
).
37.
E.
Yildirim
, “
Secondary flow loss reduction in axial turbine blades by endwall fence application
,”
J. Aeronaut. Space Technol.
10
,
17
30
(
2017
).
38.
J.
Hu
,
R.
Wang
, and
D.
Huang
, “
Improvements of performance and stability of a single-stage transonic axial compressor using a combined flow control approach
,”
Aerosp. Sci. Technol.
86
,
283
295
(
2019
).
39.
M.
Algan
,
M.
Seyhan
, and
M.
Sarioğlu
, “
Effect of aero-shaped vortex generators on NACA 4415 airfoil
,”
Ocean Eng.
291
,
116482
(
2024
).
40.
W.
Wu
and
J.
Zhong
, “
Experimental investigation of the influence on compressor cascade characteristics at high subsonic speed with pressure surface tip winglets
,”
Proc. Inst. Mech. Eng., Part A
235
(
6
),
1257
1271
(
2021
).
41.
F.
Gao
,
W.
Ma
,
J.
Sun
,
J.
Boudet
,
X.
Ottavy
,
Y.
Liu
,
L.
Lu
, and
L.
Shao
, “
Parameter study on numerical simulation of corner separation in LMFA-NACA65 linear compressor cascade
,”
Chin. J. Aeronaut.
30
(
1
),
15
30
(
2017
).
42.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
43.
W.
Xu
,
P.
Sun
, and
G.
Yang
, “
Effect of the bionic chamber position on the aerodynamic performance in a transonic compressor cascade
,”
Aerosp. Sci. Technol.
119
,
107106
(
2021
).
You do not currently have access to this content.