Cork popping represents a rich and complex fluid dynamics process, involving up to three phases (liquid, gas, and solid), three main chemical compounds (ethanol, water, CO2), and a moving cork gradually opening the bottle and blocking the fast progression of the expanding gas. In this work, we used high-speed, high-sensitivity schlieren imaging setups to provide a fresh perspective on this dynamical phenomenon. Our experimental results are systematically compared and interpreted on the basis of new computational fluid dynamics simulations. Our combined experimental and numerical works confirm the establishment of two supersonic expansions during cork popping from a champagne bottle.

1.
G.
Liger-Belair
and
C.
Cilindre
, “
Recent progress in the analytical chemistry of champagne and sparkling wines
,”
Annu. Rev. Anal. Chem.
14
,
21
46
(
2021
).
2.
C. G.
Viejo
,
D. D.
Torrico
,
F. R.
Dunshea
, and
S.
Fuentes
, “
Bubbles, foam formation, stability and consumer perception of carbonated drinks: A review of current, new and emerging technologies for rapid assessment and control
,”
Foods
8
,
596
(
2019
).
3.
G.
Liger-Belair
, “
Effervescence in champagne and sparkling wines: From grape harvest to bubble rise
,”
Eur. Phys. J.: Spec. Top.
226
,
3
116
(
2017
).
4.
G.
Liger-Belair
,
D.
Cordier
,
J.
Honvault
, and
C.
Cilindre
, “
Unveiling CO2 heterogeneous freezing plumes during champagne cork popping
,”
Sci. Rep.
7
,
10938
(
2017
).
5.
G.
Liger-Belair
,
D.
Cordier
, and
R.
Georges
, “
Under-expanded supersonic CO2 freezing jets during champagne cork popping
,”
Sci. Adv.
5
,
eaav5528
(
2019
).
6.
E.
Franquet
,
V.
Perrier
,
S.
Gibout
, and
P.
Bruel
, “
Free underexpanded jets in a quiescent medium: A review
,”
Prog. Aerosp. Sci.
77
,
25
53
(
2015
).
7.
A.
Sinha
and
I. V. L. N.
Parasuram
, “
Underexpanded jet impingement on a plane wall—Effect of NPR and jet standoff distance
,” in
Fluid Mechanics and Fluid Power
, edited by
S.
Bhattacharyya
,
S.
Verma
, and
A. R.
Harikrishnan
(
Springer Nature Singapore
,
Singapore
,
2023
), Vol.
3
, pp.
13
18
.
8.
J.
Wilkes Inman
,
P.
Danehy
,
R.
Nowak
, and
D.
Alderfer
, “
Fluorescence imaging study of impinging underexpanded jets
,” AIAA Paper No. 2008-619,
2008
.
9.
F.
Alvi
,
J.
Ladd
, and
W.
Bower
, “
Experimental and computational investigation of supersonic impinging jets
,”
AIAA J.
40
,
599
609
(
2002
).
10.
A.
Benidar
,
R.
Georges
,
V.
Kulkarni
,
D.
Cordier
, and
G.
Liger-Belair
, “
Computational fluid dynamic simulation of the supersonic CO2 flow during champagne cork popping
,”
Phys. Fluids
34
,
066119
(
2022
).
11.
G.
Liger-Belair
,
D.
Carvajal-Perez
,
C.
Cilindre
,
J.
Facque
,
M.
Brevot
,
F.
Litoux-Desrues
,
V.
Chaperon
, and
R.
Geoffroy
, “
Evidence for moderate losses of dissolved CO2 during aging on lees of a champagne prestige cuvee
,”
J. Food Eng.
233
,
40
48
(
2018
).
12.
L.
Wagner
,
S.
Braun
, and
B.
Scheichl
, “
Simulating the opening of a champagne bottle
,”
Flow
3
,
E40
(
2023
).
13.
K.
Soni
,
D. D.
Chandar
, and
J.
Sitaraman
, “
Development of an overset grid computational fluid dynamics solver on graphical processing units
,”
Comput. Fluids
58
,
1
14
(
2012
).
14.
Z.
Gao
,
Y.
Wang
,
Y.
Su
, and
L.
Chen
, “
Validation of a combined dynamic mesh strategy for the simulation of body's large amplitude motion in wave
,”
Ocean Eng.
187
,
106169
(
2019
).
15.
H.
Schardin
, “
Die schlierenverfahren und ihre anwendungen
,” in
Ergebnisse der exakten Naturwissenschaften
(
Springer
,
1942
), pp.
303
439
.
16.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer Science & Business Media
,
2001
).
17.
M. J.
Hargather
and
G. S.
Settles
, “
A comparison of three quantitative schlieren techniques
,”
Opt. Lasers Eng.
50
,
8
17
(
2012
).
18.
G. S.
Settles
and
M. J.
Hargather
, “
A review of recent developments in schlieren and shadowgraph techniques
,”
Meas. Sci. Technol.
28
,
042001
(
2017
).
19.
R.
Noll
,
C. R.
Haas
,
B.
Weikl
, and
G.
Herziger
, “
Computer simulation of schlieren images of rotationally symmetric plasma systems: A simple method
,”
Appl. Opt.
25
,
769
774
(
1986
).
20.
S.
Fu
and
Y.
Wu
, “
Detection of velocity distribution of a flow field using sequences of schlieren images
,”
Opt. Eng.
40
,
1661
1666
(
2001
).
21.
M. J.
Hargather
,
M. J.
Lawson
,
G. S.
Settles
, and
L. M.
Weinstein
, “
Seedless velocimetry measurements by schlieren image velocimetry
,”
AIAA J.
49
,
611
620
(
2011
).
22.
J.
Schäfer
,
R.
Foest
,
S.
Reuter
,
T.
Kewitz
,
J.
Šperka
, and
K.-D.
Weltmann
, “
Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma
,”
Rev. Sci. Instrum.
83
,
103506
(
2012
).
23.
R. S.
Snedeker
et al, “
A study of free jet impingement. Part 1. Mean properties of free and impinging jets
,”
J. Fluid Mech.
45
,
281
319
(
1971
).
24.
P.
Lamont
and
B.
Hunt
, “
The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates
,”
J. Fluid Mech.
100
,
471
511
(
1980
).
25.
A.
Dauptain
,
L.
Gicquel
, and
S.
Moreau
, “
Large eddy simulation of supersonic impinging jets
,”
AIAA J.
50
,
1560
1574
(
2012
).
26.
L.
Chan
,
C.
Chin
,
J.
Soria
, and
A.
Ooi
, “
Large eddy simulation and Reynolds-averaged Navier-Stokes calculations of supersonic impinging jets at varying nozzle-to-wall distances and impinging angles
,”
Int. J. Heat Fluid Flow
47
,
31
41
(
2014
).
27.
A.
Sinha
and
I.
Parasuram
, “
Underexpanded jet impingement on a plane wall-effect of NPR and jet standoff distance
,” in
Conference on Fluid Mechanics and Fluid Power
(
Springer
,
2021
), pp.
13
18
.
28.
T.
Irie
,
T.
Yasunobu
,
H.
Kashimura
, and
T.
Setoguchi
, “
Characteristics of the Mach disk in the underexpanded jet in which the back pressure continuously changes with time
,”
J. Therm. Sci.
12
,
132
137
(
2003
).
29.
M. M.
Orescanin
and
J.
Austin
, “
Exhaust of underexpanded jets from finite reservoirs
,”
J. Propul. Power
26
,
744
753
(
2010
).
30.
V.
Zapryagaev
,
V.
Pickalov
,
N.
Kiselev
, and
A.
Nepomnyashchiy
, “
Combination interaction of Taylor–Goertler vortices in a curved shear layer of a supersonic jet
,”
Theor. Comput. Fluid Dyn.
18
,
301
308
(
2004
).
31.
Y.
Zhu
and
P.
Jiang
, “
Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance
,”
Int. J. Refrig.
40
,
31
42
(
2014
).
32.
X.
Wei
,
R.
Mariani
,
L.
Chua
,
H.
Lim
,
Z.
Lu
,
Y.
Cui
, and
T.
New
, “
Mitigation of under-expanded supersonic jet noise through stepped nozzles
,”
J. Sound Vib.
459
,
114875
(
2019
).
33.
K.
Tabei
,
H.
Shirai
, and
F.
Takakusagi
, “
Density measurements of underexpanded free jets of air from circular and square nozzles by means of moire-schlieren method
,”
JSME Int. J.
35
,
212
217
(
1992
).
34.
Y.
Otobe
,
H.
Kashimura
,
S.
Matsuo
,
T.
Setoguchi
, and
H.-D.
Kim
, “
Influence of nozzle geometry on the near-field structure of a highly underexpanded sonic jet
,”
J. Fluids Struct.
24
,
281
293
(
2008
).
35.
A.
Bogomolov
,
A.
Roucou
,
R.
Bejjani
,
M.
Herman
,
N.
Moazzen-Ahmadi
, and
C.
Lauzin
, “
The rotationally resolved symmetric 2OH excitation in H2O-CO2 observed using pulsed supersonic expansion and CW-CRDS
,”
Chem. Phys. Lett.
774
,
138606
(
2021
).

Supplementary Material

You do not currently have access to this content.