The current work is undertaken to examine the capability of a recently developed ICFM (internal conical flow M) basic flowfield [Musa et al., AIAA J. 61, 1–16 (2023)] to design hypersonic internal waverider intakes. The osculating axisymmetric flows concept is employed alongside the streamline-tracing method to design three internal waverider intakes with different contraction ratios, i.e., 6.0, 9.0, and 25. The three intakes have similar capture and throat shapes and entrance areas. Then, the starting characteristics of designed intakes were investigated at different design and off-design conditions. The selected design condition is the flight at Mach 6.0 and 28 km altitude. Viscous computations have been performed at Mach 6.0, 5.0, 4.0, 3.9, 3.8, 3.5, and 3.0 for the intake with a contraction ratio of 6.0, and at Mach 6.0, 5.0, 4.7, and 4.0 for the intake with contraction ratio of 9.0. The intake with a contraction ratio of 25 is simulated at Mach 6.0 and 5.0. Successful intake starting has been achieved up to Mach 3.8 for the first intake and up to Mach 4.7 for the second intake. The intake with a contraction ratio of 25 attained an unstart state in the design condition due to a very high contraction ratio. Thus, the starting limit of internal waverider intakes designed using ICFM basic flowfield is found to be controlled by Van Wie empirical limit. It is concluded that the ICFM basic flowfield can effectively design high-performance fixed-geometry intakes with overboard spillage, demonstrating excellent performance and startability across a wide range of Mach numbers.

1.
C.
Li
,
X.
Chen
,
Y.
Li
,
O.
Musa
,
L.
Zhu
, and
W.
Li
, “
Role of the backward-facing steps at two struts on mixing and combustion characteristics in a typical strut-based scramjet with hydrogen fuel
,”
Int. J. Hydrogen Energy
44
,
28371
28387
(
2019
).
2.
W. Y.
Chan
,
S. A.
Razzaqi
,
J. C.
Turner
,
M. V.
Suraweera
, and
M. K.
Smart
, “
Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5
,”
J. Propul. Power
34
,
844
853
(
2018
).
3.
C. R.
McClinton
,
V. L.
Rausch
,
L. T.
Nguyen
, and
J. R.
Sitz
, “
Preliminary X-43 flight test results
,”
Acta Astronaut.
57
,
266
276
(
2005
).
4.
M. K.
Smart
,
N. E.
Hass
, and
A.
Paull
, “
Flight data analysis of the HyShot 2 scramjet flight experiment
,”
AIAA J.
44
,
2366
2375
(
2006
).
5.
M.
Guo
,
J.
Le
,
X.
Deng
,
Y.
Tian
,
Y.
Ma
,
S.
Tong
, and
H.
Zhang
, “
Flow field reconstruction in inlet of scramjet at Mach 10 based on physical information neural network
,”
Phys. Fluids
35
,
105144
(
2023
).
6.
E.
Zhang
,
Z.
Li
,
Y.
Li
, and
J.
Yang
, “
Three-dimensional shock interactions and vortices on a V-shaped blunt leading edge
,”
Phys. Fluids
31
,
086102
(
2019
).
7.
O.
Musa
,
G.
Huang
, and
Z.
Yu
, “
Assessment of new pressure-corrected design method for hypersonic internal waverider intake
,”
Acta Astronaut.
201
,
230
246
(
2022
).
8.
J.
Sandeep
, “
Design and performance of hypersonic intake for scramjet engine
,” in
Hypersonic and Supersonic Flight-Advances in Aerodynamics, Materials, and Vehicle Design
(
IntechOpen
,
2022
) Sec. 3, pp.
100
146
.
9.
S.
Mölder
and
E.
Timofeev
, “
Hypersonic air intake design for high performance and starting
,” in Engine Intake Aerothermal Design: Subsonic to High Speed Applications, Von Karman Institute Lecture Series Vol. 14 (
Von Karman Institute
,
2011
).
10.
S.
Molder
,
E.
Timofeev
, and
R.
Tahir
, “
Flow starting in high compression hypersonic air inlets by mass spillage
,” AIAA Paper No. 2004-4130,
2004
.
11.
A.
Kantrowitz
,
Preliminary Investigation of Supersonic Diffusers
(
National Advisory Committee for Aeronautics
,
1945
).
12.
S.
Yang
,
W.
Xie
,
C.
Xu
, and
G.
Ma
, “
Generalized prediction for self-starting performance of two-dimensional hypersonic inlets
,”
Phys. Fluids
36
,
015129
(
2024
).
13.
S.
Mashio
,
K.
Kurashina
,
T.
Bamba
,
S.
Okimoto
, and
S.
Kaji
, “
Unstart phenomenon due to thermal choke in scramjet module
,” AIAA Paper No. 2001-1887,
2001
.
14.
D.
Van Wie
,
F.
Kwok
, and
R.
Walsh
, “
Starting characteristics of supersonic inlets
,” AIAA Paper No. 1996-2914,
1996
.
15.
N.
Mushtaq
and
P.
Gaetani
, “
Understanding and modeling unstarting phenomena in a supersonic inlet cascade
,”
Phys. Fluids
35
,
106101
(
2023
).
16.
J.
Chang
,
N.
Li
,
K.
Xu
,
W.
Bao
, and
D.
Yu
, “
Recent research progress on unstart mechanism, detection and control of hypersonic inlet
,”
Prog. Aerosp. Sci.
89
,
1
22
(
2017
).
17.
A.
Hamed
,
S.
Shih
, and
J.
Yeuan
, “
Investigation of shock/turbulent boundary-layer bleed interactions
,”
J. Propul. Power
10
,
79
87
(
1994
).
18.
S.
Pandian
,
J.
Jose
,
M.
Patil
, and
P.
Srinivasa
, “
Hypersonic air intake performance improvement through different bleed systems
,” in
15th International Symposium on Air Breathing Engines (ISOABE)
, Bangalore, India (
2001
).
19.
S.
Das
and
J.
Prasad
, “
Characteristics of a supersonic air-intake with bleed
,” in Proceedings of the International Conference on Aerospace Science and Technology, Bangaloire, India, 26–28 June 2008.
20.
V. V.
Kumar
and
S.
Bogadi
, “
Effect of micro-vortex generator in hypersonic inlet
,”
Int. J. Appl. Res. Mech. Eng.
1
,
10
13
(
2011
).
21.
H.
Babinsky
,
Y.
Li
, and
C. W.
Pitt Ford
, “
Microramp control of supersonic oblique shock-wave/boundary-layer interactions
,”
AIAA J.
47
,
668
675
(
2009
).
22.
P.
Ashill
,
J.
Fulker
, and
K.
Hackett
, “
A review of recent developments in flow control
,”
Aeronaut. J.
109
,
205
232
(
2005
).
23.
R.
Szwaba
,
P.
Flaszyński
,
J.
Szumski
, and
J.
Telega
, “
Shock wave-boundary layer interaction control by air-jet streamwise vortices
,” in Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Lyon, France, 2–5 July 2007 (Laboratoire de Mécanique des Fluides et d'Acoustique, 2007), Vol. 2, p. 548.
24.
J.
Hutzel
,
D.
Decker
, and
J.
Donbar
, “
Scramjet isolator shock-train leading-edge location modeling
,” AIAA Paper No. 2011-2223,
2011
.
25.
A.
Valdivia
,
K.
Yuceil
,
J.
Wagner
,
N.
Clemens
, and
D.
Dolling
, “
Control of supersonic inlet-isolator unstart using active and passive vortex generators
,”
AIAA J.
52
,
1207
1218
(
2014
).
26.
C.
Trexler
, “
Inlet starting predictions for sidewall-compression scramjet inlets
,” AIAA Paper No. 1988-3257,
1988
.
27.
L.
Jacobsen
,
C.-J.
Tam
,
R.
Behdadnia
, and
F.
Billig
, “
Starting and operation of a streamline-traced Busemann inlet at Mach 4
,” AIAA Paper No. 2006-4508,
2006
.
28.
H.
Ogawa
,
A. L.
Grainger
, and
R. R.
Boyce
, “
Inlet starting of high-contraction axisymmetric scramjets
,”
J. Propul. Power
26
,
1247
1258
(
2010
).
29.
X.
Veillard
,
R.
Tahir
,
E.
Timofeev
, and
S.
Molder
, “
Limiting contractions for starting simple ramp-type scramjet intakes with overboard spillage
,”
J. Propul. Power
24
,
1042
1049
(
2008
).
30.
M. K.
Smart
and
C. A.
Trexler
, “
Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition
,”
J. Propul. Power
20
,
288
293
(
2004
).
31.
J. R.
Colville
,
R. P.
Starkey
, and
M. J.
Lewis
, “
Axisymmetric inlet design for combined-cycle engines
,”
J. Propul. Power
22
,
1049
1058
(
2006
).
32.
C.
Hao
,
W.
Luo
,
Z.
Yu
,
J.
Zhu
, and
Y.
You
, “
Novel design method for inward-turning inlets with non-uniform inflow
,”
Aerosp. Sci. Technol.
148
,
109098
(
2024
).
33.
S. M.
Mousavi
,
R.
Pourabidi
, and
E.
Goshtasbi-Rad
, “
Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle
,”
Acta Astronaut.
146
,
273
281
(
2018
).
34.
B. O.
Cakir
,
A. C.
Ispir
, and
B. H.
Saracoglu
, “
Reduced order design and investigation of intakes for high speed propulsion systems
,”
Acta Astronaut.
199
,
259
276
(
2022
).
35.
S.
Molder
and
E. J.
Szpiro
, “
Busemann inlet for hypersonic speeds
,”
J. Spacecr. Rockets
3
,
1303
1304
(
1966
).
36.
A.
Busemann
, “
Die achsensymmetrische kegelige Überschallströmung
,”
Luftfahrtforschung
19
,
137
144
(
1942
).
37.
H.
Sobieczky
,
B.
Zores
,
Z.
Wang
, and
Y.
Qian
, “
High speed flow design using osculating axisymmetric flows
,” in
Proceedings of 3rd Pacific International Conference on Aerospace Science and Technology
(AIAA,
1997
), pp.
182
187
.
38.
Y.
You
,
D.
Liang
, and
G.
Huang
, “
Cross section controllable hypersonic inlet design using streamline-tracing and osculating axisymmetric concepts
,” AIAA Paper No. 2007-5379,
2007
.
39.
Y.
You
,
D.
Liang
, and
R.
Guo
, “
High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet
,” AIAA Paper No. 2009-32,
2009
.
40.
Y.
You
and
D.
Liang
, “
Design concept of three-dimensional section controllable internal waverider hypersonic inlet
,”
Sci. China Ser. E
52
,
2017
2028
(
2009
).
41.
Y.
You
,
D.
Liang
, and
K.
Cai
, “
Numerical research of three-dimensional sections controllable internal waverider hypersonic inlet
,” AIAA Paper No. 2008-4708,
2008
.
42.
O.
Musa
,
G.
Huang
,
B.
Jin
,
S.
Mölder
, and
Z.
Yu
, “
New parent flowfield for streamline-traced intakes
,”
AIAA J.
61
,
2906
(
2023
).
43.
M. J.
Pour Razzaghi
,
S. M.
Rezaei Sani
,
O.
Musa
,
Y.
Masoumi
, and
G.
Huang
, “
Hybrid suction/blowing actuator to control flow separation on the ramp and energy cost analysis
,”
Phys. Fluids
35
,
125103
(
2023
).
44.
O.
Musa
,
G.
Huang
, and
Z.
Yu
, “
Evaluation of the pressure-corrected osculating axisymmetric flows method for designing hypersonic wavecatcher intakes with shape transition
,”
J. Aerosp. Eng.
37
,
04024023
(
2024
).
45.
G. I.
Taylor
and
J. W.
Maccoll
, “
The air pressure on a cone moving at high speeds–II
,”
Proc. R. Soc. London, Ser. A
139
,
298
311
(
1933
).
46.
S. E.
Otto
,
C. J.
Trefny
, and
J. W.
Slater
, “
Inward-turning streamline-traced inlet design method for low-boom, low-drag applications
,”
J. Propul. Power
32
,
1178
1189
(
2016
).
47.
F.-Y.
Zuo
and
S.
Mölder
, “
Flow quality in an M-Busemann wavecatcher intake
,”
Aerosp. Sci. Technol.
121
,
107376
(
2022
).
48.
Z.
Yu
,
G.
Huang
,
R.
Wang
, and
O.
Musa
, “
Spillage-adaptive fixed-geometry bump inlet of wide speed range
,”
Aerospace
8
,
340
(
2021
).
49.
J.
Zhang
,
H.
Yuan
,
Y.
Wang
, and
G.
Huang
, “
Experiment and numerical investigation of flow control on a supersonic inlet diffuser
,”
Aerosp. Sci. Technol.
106
,
106182
(
2020
).
50.
C.
Xia
,
G.
Huang
,
T.
Yue
,
H.
Huang
, and
R.
Wang
, “
A new design of variable-geometry TBCC inlet based on an internal waverider concept
,”
Int. J. Astronaut. Aeronaut. Eng.
5
,
37
(
2020
).
51.
P.
Waltrup
,
F.
Billig
, and
R.
Stockbridge
, “
Engine sizing and integration requirements for hypersonic airbreathing missile applications
,” in
AGARD Ramjets and Ramrockets for Mil. Appl.
(SEE N82-32256, 22-99) (Advisory Group for Aerospace Research and Development, France,
1982
), p.
41
, see https://apps.dtic.mil/sti/tr/pdf/ADA115370.pdf
52.
K.
Tai
,
T.
Kanda
,
K.
Kudou
,
A.
Murakami
,
T.
Komuro
, and
K.
Itoh
, “
Aerodynamic performance of scramjet inlet models with a single strut
,” AIAA Paper No. 93-0741,
1993
.
53.
T.
Drayna
,
I.
Nompelis
, and
G.
Candler
, “
Hypersonic inward turning inlets: Design and optimization
,” AIAA Paper No. 2006-297,
2006
.
You do not currently have access to this content.