This work presents a comparison of several high-order numerical methodologies for simulating shock/turbulence interactions based on the supersonic Taylor–Green vortex flow, considering a Reynolds number of 1600 and a Mach number of 1.25. The numerical schemes considered include high-order Finite Difference, Targeted Essentially Non-Oscillatory, Discontinuous Galerkin, and Spectral Difference schemes. The shock capturing methods include high-order filtering, localized artificial diffusivity, non-oscillatory numerical fluxes, and local low-order switching. The ability of the various high-order numerical methodologies to both capture shocks and represent accurately the development of turbulent vortices is assessed.

1.
M. E.
Brachet
,
D. I.
Meiron
,
S. A.
Orszag
,
B.
Nickel
,
R. H.
Morf
, and
U.
Frisch
, “
Small-scale structure of the Taylor–Green vortex
,”
J. Fluid Mech.
130
,
411
452
(
1983
).
2.
Z. J.
Wang
,
K.
Fidkowski
,
R.
Abgrall
,
F.
Bassi
,
D.
Caraeni
,
A.
Cary
,
H.
Deconinck
,
R.
Hartmann
,
K.
Hillewaert
,
H. T.
Huynh
et al, “
High-order CFD methods: Current status and perspective
,”
Int. J. Numer. Methods Fluids
72
,
811
845
(
2013
).
3.
C.
Carton de Wiart
,
K.
Hillewaert
,
M.
Duponcheel
, and
G.
Winckelmans
, “
Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number
,”
Int. J. Numer. Methods Fluids
74
,
469
493
(
2014
).
4.
G. J.
Gassner
and
A. D.
Beck
, “
On the accuracy of high-order discretizations for underresolved turbulence simulations
,”
Theor. Comput. Fluid Dyn.
27
,
221
237
(
2013
).
5.
J.-B.
Chapelier
,
M.
De La Llave Plata
,
F.
Renac
, and
E.
Lamballais
, “
Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows
,”
Comput. Fluids
95
,
210
226
(
2014
).
6.
D. J.
Lusher
and
N. D.
Sandham
, “
Assessment of low-dissipative shock-capturing schemes for the compressible Taylor–Green vortex
,”
AIAA J.
59
,
533
545
(
2021
).
7.
E.
Johnsen
,
J.
Larsson
,
A. V.
Bhagatwala
,
W. H.
Cabot
,
P.
Moin
,
B. J.
Olson
,
P. S.
Rawat
,
S. K.
Shankar
,
B.
Sjögreen
,
H. C.
Yee
et al, “
Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
,”
J. Comput. Phys.
229
,
1213
1237
(
2010
).
8.
L.
Fu
,
X. Y.
Hu
, and
N. A.
Adams
, “
A family of high-order targeted ENO schemes for compressible-fluid simulations
,”
J. Comput. Phys.
305
,
333
359
(
2016
).
9.
B.
Cockburn
, “
Discontinuous Galerkin methods for convection-dominated problems
,” in
High-Order Methods for Computational Physics
(
Springer
,
1999
), pp.
69
224
.
10.
D. A.
Kopriva
and
J. H.
Kolias
, “
A conservative staggered-grid Chebyshev multidomain method for compressible flows
,”
J. Comput. Phys.
125
,
244
261
(
1996
).
11.
Y.
Liu
,
M.
Vinokur
, and
Z. J.
Wang
, “
Spectral difference method for unstructured grids I: Basic formulation
,”
J. Comput. Phys.
216
,
780
801
(
2006
).
12.
H. T.
Huynh
, “
A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods
,” AIAA Paper No. AIAA 2007-4079,
2007
.
13.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
14.
M. J.
Kloker
, “
A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition
,”
Appl. Sci. Res.
59
,
353
(
1997
).
15.
D. J.
Lusher
,
S. P.
Jammy
, and
N. D.
Sandham
, “
OpenSBLI: Automated code-generation for heterogeneous computing architectures applied to compressible fluid dynamics on structured grids
,”
Comput. Phys. Commun.
267
,
108063
(
2021
).
16.
L.
Fu
, “
Review of the high-order TENO schemes for compressible gas dynamics and turbulence
,”
Arch. Computat. Methods Eng.
30
,
2493
2526
(
2023
).
17.
C.
Wenzel
,
J. M. F.
Peter
,
B.
Selent
,
M.
Weinschenk
,
U.
Rist
, and
M. J.
Kloker
, “
DNS of compressible turbulent boundary layers with adverse pressure gradients
,” in
High Performance Computing in Science and Engineering
, edited by
W. E.
Nagel
(
Springer
,
2018
).
18.
W.
van Noordt
,
S.
Ganju
, and
C.
Brehm
, “
An immersed boundary method for wall-modeled large-eddy simulation of turbulent high-Mach-number flows
,”
J. Comput. Phys.
470
,
111583
(
2022
).
19.
J.-B.
Chapelier
,
G.
Lodato
, and
A.
Jameson
, “
A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence
,”
Comput. Fluids
139
,
261
280
(
2016
).
20.
P.
Stefanin Volpiani
,
J.-B.
Chapelier
,
A.
Schwöppe
,
J.
Jägersküpper
, and
S.
Champagneux
, “
Aircraft simulations using the new CFD software from ONERA, DLR, and Airbus
,”
J. Aircr.
(published online
2024
).
21.
N.
Krais
,
A.
Beck
,
T.
Bolemann
,
H.
Frank
,
D.
Flad
,
G.
Gassner
,
F.
Hindenlang
,
M.
Hoffmann
,
T.
Kuhn
,
M.
Sonntag
et al, “
Flexi: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws
,”
Comput. Math. Appl.
81
,
186
219
(
2021
).
22.
C. L.
Running
,
B. L.
Bemis
,
J. L.
Hill
,
M. P.
Borg
,
J. J.
Redmond
,
K.
Jantze
, and
C.
Scalo
, “
Attenuation of hypersonic second-mode boundary-layer instability with an ultrasonically absorptive silicon-carbide foam
,”
Exp. Fluids
64
,
79
(
2023
).
23.
F.
Bassi
,
L.
Botti
,
A.
Colombo
,
D. A.
Di Pietro
, and
P.
Tesini
, “
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations
,”
J. Comput. Phys.
231
,
45
65
(
2012
).
24.
F.
Basile
,
J.-B.
Chapelier
,
M.
de la Llave Plata
,
R.
Laraufie
, and
P.
Frey
, “
Unstructured h- and hp-adaptive strategies for discontinuous Galerkin methods based on a posteriori error estimation for compressible flows
,”
Comput. Fluids
233
,
105245
(
2022
).
25.
F.
Bassi
and
S.
Rebay
, “
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations
,”
J. Comput. Phys.
131
,
267
279
(
1997
).
26.
F.
Bassi
,
S.
Rebay
,
G.
Mariotti
,
S.
Pedinotti
,
M.
Savini
et al, “
A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows
,” in
2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
(
Technologisch Instituut
,
Antwerpen, Belgium
,
1997
), pp.
99
108
.
27.
P.-O.
Persson
and
J.
Peraire
, “
Sub-cell shock capturing for discontinuous Galerkin methods
,” AIAA Paper No. AIAA 2006-112,
2006
.
28.
J.
Glaubitz
,
A.
Nogueira
,
J. L.
Almeida
,
R.
Cantão
, and
C.
Silva
, “
Smooth and compactly supported viscous sub-cell shock capturing for discontinuous Galerkin methods
,”
J. Sci. Comput.
79
,
249
272
(
2019
).
29.
F.
Ducros
,
V.
Ferrand
,
F.
Nicoud
,
C.
Weber
,
D.
Darracq
,
C.
Gacherieu
, and
T.
Poinsot
, “
Large-eddy simulation of the shock/turbulence interaction
,”
J. Comput. Phys.
152
,
517
549
(
1999
).
30.
C.
Wang
,
X.
Zhang
,
C.-W.
Shu
, and
J.
Ning
, “
Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations
,”
J. Comput. Phys.
231
,
653
665
(
2012
).
31.
S.
Ganju
,
W.
van Noordt
, and
C.
Brehm
, “
Progress in the development of an immersed boundary viscous-wall model for 3D and high-speedflows
,” AIAA Paper No. AIAA 2021-0160,
2021
.
32.
C.
Brehm
,
M. F.
Barad
, and
C. C.
Kiris
, “
Development of immersed boundary computational aeroacoustic prediction capabilities for open-rotor noise
,”
J. Comput. Phys.
388
,
690
716
(
2019
).
33.
Y.
Kuya
,
K.
Totani
, and
S.
Kawai
, “
Kinetic energy and entropy preserving schemes for compressible flows by split convective forms
,”
J. Comput. Phys.
375
,
823
853
(
2018
).
34.
K.
Totani
,
Y.
Kuya
, and
S.
Kawai
, “
High-order-accurate kinetic energy and entropy preserving schemes on curvilinear meshes
,” AIAA Paper No. AIAA 2019-1403,
2019
.
35.
I. Z.
Reguly
,
G. R.
Mudalige
,
M. B.
Giles
,
D.
Curran
, and
S.
McIntosh-Smith
,
The OPS Domain Specific Abstraction for Multi-Block Structured Grid Computations
(
IEEE Press
,
2014
), pp.
58
67
.
36.
G.
Coppola
,
F.
Capuano
,
S.
Pirozzoli
, and
L.
de Luca
, “
Numerically stable formulations of convective terms for turbulent compressible flows
,”
J. Comput. Phys.
382
,
86
104
(
2019
).
37.
M. H.
Carpenter
and
C. A.
Kennedy
, “
Fourth-order 2N-storage Runge-Kutta schemes
,”
Report No. NASA-TM-109112
(
NASA Langley Research Center
,
1994
).
38.
A.
Hamzehloo
,
D. J.
Lusher
,
S.
Laizet
, and
N. D.
Sandham
, “
On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows
,”
Int. J. Numer. Methods Fluids
93
,
176
196
(
2021
).
39.
A.
Babucke
,
Direct Numerical Simulation of Noise-Generation Mechanisms in the Mixing Layer of a Jet
(
Verlag Dr. Hut
,
2009
).
40.
M. A.
Keller
and
M. J.
Kloker
, “
Effusion cooling and flow tripping in laminar supersonic boundary-layer flow
,”
AIAA J.
53
,
902
919
(
2015
).
41.
M. R.
Visbal
and
D. V.
Gaitonde
, “
On the use of higher-order finite-difference schemes on curvilinear and deforming meshes
,”
J. Comput. Phys.
181
,
155
185
(
2002
).
42.
Y.
Sun
,
Z.
Wang
, and
Y.
Liu
, “
High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids
,”
Commun. Comput. Phys.
2
,
310
333
(
2007
), see http://global-sci.org/intro/article_detail/cicp/7908.html.
43.
A.
Jameson
, “
A proof of the stability of the spectral difference method for all orders of accuracy
,”
J. Sci. Comput.
45
,
348
358
(
2010
).
44.
P.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
45.
A.
Harten
and
J. M.
Hyman
, “
Self adjusting grid methods for one-dimensional hyperbolic conservation laws
,”
J. Comput. Phys.
50
,
235
269
(
1983
).
46.
M.
Pelanti
,
L.
Quartapelle
, and
L.
Vigevano
, “
A review of entropy fixes as applied to Roe's linearization
,” in
Teaching Material of the Aerospace and Aeronautics Department of Politecnico di Milano
(Politecnico di Milano, 2001), Vol. 31.
47.
S.
Gottlieb
and
C.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput.
67
,
73
85
(
1998
).
48.
G.
Lodato
, “
Characteristic modal shock detection for discontinuous finite element methods
,”
Comput. Fluids
179
,
309
333
(
2019
).
49.
P.-O.
Persson
, “
Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems
,” AIAA Paper No. 2013-3061,
2013
.
50.
N.
Tonicello
,
G.
Lodato
, and
L.
Vervisch
, “
Analysis of high-order explicit LES dynamic modeling applied to airfoil flows
,”
Flow, Turbul. Combust.
108
,
77
104
(
2022
).
51.
X.
Zhang
and
C.-W.
Shu
, “
On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
,”
J. Comput. Phys.
229
,
8918
8934
(
2010
).
52.
See https://github.com/flexi-framework for the repository hosting the FLEXI software suite.
53.
A. D.
Beck
,
T.
Bolemann
,
D.
Flad
,
H.
Frank
,
G. J.
Gassner
,
F.
Hindenlang
, and
C.-D.
Munz
, “
High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations
,”
Int. J. Numer. Methods Fluids
76
,
522
548
(
2014
).
54.
https://github.com/flexi-framework/hopr for the high-order pre-processor HOPR.
55.
M.
Blind
,
M.
Gao
,
D.
Kempf
,
P.
Kopper
,
M.
Kurz
,
A.
Schwarz
, and
A.
Beck
, “
Towards exascale CFD simulations using the discontinuous Galerkin solver FLEXI
,” arXiv:2306.12891 (
2023
).
56.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection
,”
J. Comput. Phys.
23
,
276
299
(
1977
).
57.
P.
Mossier
,
A.
Beck
, and
C.-D.
Munz
, “
A p-adaptive discontinuous Galerkin method with hp-shock capturing
,”
J. Sci. Comput.
91
,
4
(
2022
).
58.
C.
Mavriplis
, “
A posteriori error estimators for adaptive spectral element techniques
,” in
Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics
, edited by
P.
Wesseling
(
Vieweg+Teubner Verlag
,
Wiesbaden
,
1990
), pp.
333
342
.
59.
M.
Sonntag
and
C.-D.
Munz
, “
Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells
,”
J. Sci. Comput.
70
,
1262
1289
(
2017
).
60.
P.
Mossier
,
D.
Appel
,
A. D.
Beck
, and
C.-D.
Munz
, “
An efficient hp-adaptive strategy for a level-set ghost-fluid method
,”
J. Sci. Comput.
97
,
50
(
2023
).
61.
B. L.
Bemis
,
J. L.
Hill
,
M. P.
Borg
,
J. J.
Redmond
,
M.
Ruggeri
,
K.
Jantze
,
C.
Scalo
, and
C. L.
Running
, “
Effect of porosity on the ability of silicon-carbide foams to attenuate second-mode boundary-layer instability
,” AIAA Paper No. AIAA 2023-3706,
2023
.
62.
B. L.
Bemis
,
J. L.
Brun
,
C. T.
Wanstall
,
J. J.
Hill
,
M. P.
Borg
,
J. J.
Redmond
,
M.
Ruggeri
,
K.
Jantze
,
C.
Scalo
, and
C. L.
Running
, “Ultrasonically absorptive silicon-carbide foam for boundary-layer control” AIAA Paper No. AIAA 2023-0096,
2023
.
63.
M.
Ruggeri
,
V. C. B.
Sousa
, and
C.
Scalo
, “
Block Spectral Stresses (BSS) estimation for shock-capturing and turbulent modeling
,” arXiv:2402.19354 (
2024
).
You do not currently have access to this content.