The high-speed coolant pump facilitates thermal regulation in electric vehicle components, including batteries and motors, by circulating an ethylene glycol solution. This commonly used circulating fluid exhibits a notable negative correlation with temperature in terms of viscosity. Numerical simulations investigate the transient dynamics of a high-speed coolant pump operating at 6000 rpm, driving coolant flow at various temperatures. A high-speed coolant pump test rig is established, and the performance is evaluated under different temperature conditions. The numerical simulations at different temperatures align well with the experimental outcomes. Decreasing temperatures, from 100 to −20 °C, lead to reduced pump head and efficiency due to increased viscosity. Specifically, at a flow rate of 30 L/min, head decreases by 40.03% and efficiency by 44.19%. With escalating viscosity, the best efficiency point shifts toward lower flow rates. Notable impacts on both disk efficiency and hydraulic efficiency are observed due to viscosity fluctuations. It exerts minimal influence on volumetric efficiency at elevated flow rates but has a substantial impact on volumetric efficiency at lower flow rates. Increased fluid viscosity causes uneven pressure distribution within the pump, altering velocity profiles within the impeller. High-viscosity fluids tend to form large-scale vortex structures around the blades, reducing the thrust exerted by the blades on the fluid. Higher viscosity results in larger vortex structures around the blades, reducing thrust and increasing fluid frictional resistance. The study findings provide valuable insights for the advancement of high-efficiency, energy-saving, high-speed coolant pumps tailored for electric vehicles.

1.
J. M.
Joy
,
A.
Kumar
, and
D.
Rakshit
, “
Study of dielectric-based thermal management of second-life battery packs with rectangular vortex generators
,”
Phys. Fluids
36
(
3
),
035124
(
2024
).
2.
A.
Mehrdad
,
H.
Shekaari
, and
N.
Noorani
, “
Density, speed of sound, viscosity, and conductivity of lactic acid in the aqueous solutions of polyethylene glycol at different temperatures
,”
J. Mol. Liquids
255
,
454
461
(
2018
).
3.
W. D.
Fonseca
,
R. F.
Cerqueira
,
R. M.
Perissinotto
,
W. M.
Verde
,
M. S.
Castro
, and
E. M.
Franklin
, “
Particle image velocimetry in the impeller of a centrifugal pump: A POD-based analysis
,”
Flow Meas. Instrum.
94
,
102483
(
2023
).
4.
F.
Han
,
L.
Wang
,
H.
Pu
, and
J.
Mao
, “
Experimental investigations on flow characteristics of impingement/swirl cooling structures inside a blade leading edge
,”
Phys. Fluids
35
(
11
),
115103
(
2023
).
5.
L.
Lei
,
T.
Wang
,
B.
Qiu
,
H.
Yu
,
Y.
Liu
, and
Y.
Dong
, “
The influence of ring clearance on the performance of a double-suction centrifugal pump
,”
Phys. Fluids
36
(
2
),
025133
(
2024
).
6.
J.
Feng
,
Z.
Ge
,
Y.
Zhang
,
G.
Zhu
,
G.
Wu
,
J.
Lu
, and
X.
Luo
, “
Numerical investigation on characteristics of transient process in centrifugal pumps during power failure
,”
Renewable Energy
170
,
267
276
(
2021
).
7.
Q.
Deng
,
J.
Pei
,
W.
Wang
, and
J.
Sun
, “
Investigation of energy dissipation mechanism and the influence of vortical structures in a high-power double-suction centrifugal pump
,”
Phys. Fluids
35
(
7
),
075147
(
2023
).
8.
A. R.
Al-Obaidi
, “
Numerical investigation on effect of various pump rotational speeds on performance of centrifugal pump based on CFD analysis technique
,”
Int. J. Model. Simul. Sci. Comput.
12
(
05
),
2150045
(
2021
).
9.
Z.
Li
,
H.
Ding
,
X.
Shen
, and
Y.
Jiang
, “
Performance optimization of high specific speed centrifugal pump based on orthogonal experiment design method
,”
Processes
7
(
10
),
728
(
2019
).
10.
Y.
Yuan
,
R.
Jin
,
L.
Tang
, and
Y.
Lin
, “
Optimization design for the centrifugal pump under non-uniform elbow inflow based on orthogonal test and GA_PSO
,”
Processes
10
(
7
),
1254
(
2022
).
11.
L.
Zhang
,
X.
Wang
,
P.
Wu
,
B.
Huang
, and
D.
Wu
, “
Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration
,”
Energy
268
,
126677
(
2023
).
12.
T.
Yu
,
Z.
Shuai
,
X.
Wang
,
J.
Jian
,
J.
He
,
W.
Li
, and
C.
Jiang
, “
Research on wake and potential flow effects of rotor–stator interaction in a centrifugal pump with guided vanes
,”
Phys. Fluids
35
(
3
),
037107
(
2023
).
13.
Y.
Lin
,
X.
Li
,
Z.
Zhu
,
X.
Wang
,
T.
Lin
, and
H.
Cao
, “
An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge
,”
Energy
246
,
123323
(
2022
).
14.
C.
Wang
,
X.
Chen
,
J.
Ge
,
W.
Cao
,
Q.
Zhang
,
Y.
Zhu
, and
H.
Chang
, “
Internal flow characteristics of high-specific-speed centrifugal pumps with different number of impeller blades under large flow conditions
,”
Machines
11
(
2
),
138
(
2023
).
15.
Y.
Gu
,
H.
Sun
,
C.
Wang
,
R.
Lu
,
B.
Liu
, and
J.
Ge
, “
Effect of trimmed rear shroud on performance and axial thrust of multi-stage centrifugal pump with emphasis on visualizing flow losses
,”
J. Fluids Eng.
146
(
1
),
011204
(
2024
).
16.
N.
Fecser
and
I.
Lakatos
, “
Cavitation measurement in a centrifugal pump
,”
Acta Polytech. Hung.
18
(
4
),
63
(
2021
).
17.
W.
Li
,
M.
Liu
,
L.
Ji
,
S.
Li
,
R.
Song
,
C.
Wang
,
W.
Cao
, and
R. K.
Agarwal
, “
Study on the trajectory of tip leakage vortex and energy characteristics of mixed-flow pump under cavitation conditions
,”
Ocean Eng.
267
,
113225
(
2023
).
18.
B.
Gong
,
C.
Feng
,
N.
Li
,
X.
Ouyang
,
J.
Yin
, and
D.
Wang
, “
Influence of cavitation on vortical structures and energy loss in a waterjet pump
,”
Phys. Fluids
36
(
3
),
035139
(
2024
).
19.
X.
Jia
,
H.
Chen
,
H.
Wang
,
Y.
Sun
,
H.
Liu
, and
Z.
Zhu
, “
Correlation study between internal flow and vibration characteristics in centrifugal pumps at different cavitation levels
,”
Phys. Fluids
35
(
12
),
125118
(
2023
).
20.
J.
Lu
,
J.
Liu
,
L.
Qian
,
X.
Liu
,
S.
Yuan
,
B.
Zhu
, and
Y.
Dai
, “
Investigation of pressure pulsation induced by quasi-steady cavitation in a centrifugal pump
,”
Phys. Fluids
35
(
2
),
025119
(
2023
).
21.
X.
Jia
,
Y.
Yu
,
B.
Li
,
F.
Wang
, and
Z.
Zhu
, “
Effects of incident angle of sealing ring clearance on internal flow and cavitation of centrifugal pump
,”
Proc. Inst. Mech. Eng. Part E: J. Process. Mech. Eng.
(published online
2023
).
22.
W.
Li
,
Y.
Huang
,
L.
Ji
,
L.
Ma
,
R. K.
Agarwal
, and
M.
Awais
, “
Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump
,”
Energy
271
,
127082
(
2023
).
23.
Y.
Gu
,
J.
Bian
,
C.
Wang
,
H.
Sun
,
M.
Wang
, and
J.
Ge
, “
Transient numerical investigation on hydraulic performance and flow field of multi-stage centrifugal pump with floating impellers under sealing gasket damage condition
,”
Phys. Fluids
35
(
10
),
107123
(
2023
).
24.
B.
Liu
,
W.
Yang
,
L.
Cheng
,
X.
Huang
, and
W.
Jiao
, “
Numerical study on jet-wake flow and its evolution in a centrifugal pump with alternating stall
,”
Phys. Fluids
35
(
11
),
115105
(
2023
).
25.
Y.
Tang
,
F.
Wang
,
C.
Wang
,
C.
Ye
,
Q.
Qu
, and
J.
Xu
, “
Investigation on the influence of seal clearance leakage on the rotating stall characteristics for a centrifugal pump
,”
Phys. Fluids
36
(
2
),
025176
(
2024
).
26.
Z.
Zhao
,
W.
Song
,
Y.
Jin
, and
L.
He
, “
Numerical study on flow stall and kinetic energy conversion of low-specific-speed centrifugal pump
,”
Phys. Fluids
35
(
4
),
044104
(
2023
).
27.
W. G.
Li
, “
Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller
,”
Int. J. Heat Fluid Flow
21
(
2
),
207
212
(
2000
).
28.
M. H.
Shojaeefard
,
M.
Tahani
,
A.
Khalkhali
,
M. B.
Ehghaghi
,
H.
Fallah
, and
M.
Beglari
, “
A parametric study for improving the centrifugal pump impeller for use in viscous fluid pumping
,”
Heat Mass Transfer
49
,
197
206
(
2013
).
29.
F.
Rorro
,
F.
Fiusco
,
L. M.
Broman
, and
L.
Prahl Wittberg
, “
Backflow at the inlet of centrifugal blood pumps enhanced by geometrical features
,”
Phys. Fluids
36
(
3
),
037127
(
2024
).
30.
R.
Torabi
and
S. A.
Nourbakhsh
, “
The effect of viscosity on performance of a low specific speed centrifugal pump
,”
Int. J. Rotating Mach.
2016
,
1
.
31.
E. M.
Ofuchi
,
H.
Stel
,
T.
Sirino
,
T. S.
Vieira
,
F. J.
Ponce
,
S.
Chiva
, and
R. E. M.
Morales
, “
Numerical investigation of the effect of viscosity in a multistage electric submersible pump
,”
Eng. Appl. Comput. Fluid Mech.
11
(
1
),
258
272
(
2017
).
32.
W. J.
Cheng
,
C. L.
Shao
, and
J. F.
Zhou
, “
Unsteady study of molten salt pump conveying mediums with different viscosities
,”
Int. J. Heat Mass Transfer
137
,
174
183
(
2019
).
33.
H.
Yousefi
,
Y.
Noorollahi
,
M.
Tahani
,
R.
Fahimi
, and
S.
Saremian
, “
Numerical simulation for obtaining optimal impeller's blade parameters of a centrifugal pump for high-viscosity fluid pumping
,”
Sustainable Energy Technol. Assessments
34
,
16
26
(
2019
).
34.
Z.
Liu
,
L.
Zou
,
J.
Qiao
,
C.
Shi
, and
X.
Liu
, “
The influence of the viscosity of crude oil on liquid-dynamic noise characteristics in the volute shell of oil transfer pump
,”
Measurement
197
,
111285
(
2022
).
35.
B.
Kim
,
M. H.
Siddique
,
S. A. I.
Bellary
,
S. W.
Choi
, and
D. E.
Lee
, “
Investigation of a centrifugal pump for energy loss due to clearance thickness while pumping different viscosity oils
,”
Results Eng.
18
,
101038
(
2023
).
36.
G.
Morrison
,
W.
Yin
,
R.
Agarwal
, and
A.
Patil
, “
Development of modified affinity law for centrifugal pump to predict the effect of viscosity
,”
J. Energy Resour. Technol.
140
(
9
),
092005
(
2018
).
37.
A.
Patil
,
W.
Yin
,
R.
Agarwal
,
A.
Delgado
, and
G.
Morrison
, “
Extending classical friction loss modeling to predict the viscous performance of pumping devices
,”
J. Fluids Eng.
141
(
10
),
101202
(
2019
).
38.
J.
Zhu
,
H.
Zhu
,
G.
Cao
,
J.
Zhang
,
J.
Peng
,
H.
Banjar
, and
H. Q.
Zhang
, “
A new mechanistic model to predict boosting pressure of electrical submersible pumps under high-viscosity fluid flow with validations by experimental data
,”
SPE J.
25
(
02
),
744
758
(
2020
).
39.
S.
Abazariyan
,
R.
Rafee
, and
S.
Derakhshan
, “
Experimental study of viscosity effects on a pump as turbine performance
,”
Renewable Energy
127
,
539
547
(
2018
).
40.
A.
Maleki
,
M. M.
Ghorani
,
M. H. S.
Haghighi
, and
A.
Riasi
, “
Numerical study on the effect of viscosity on a multistage pump running in reverse mode
,”
Renewable Energy
150
,
234
254
(
2020
).
41.
Y.
Gu
,
D.
Wang
,
L.
Cheng
,
A.
Schimpf
, and
M.
Böhle
, “
A novel method to achieve fast multi-objective optimization of hydrostatic porous journal bearings used in hydraulic turbomachine
,”
J. Fluids Eng.
145
(
5
),
051205
(
2023
).
42.
Y.
Gu
,
J.
Cheng
,
H.
Sun
,
A.
Liang
, and
L.
Cheng
, “
A three-dimensional slip velocity model for water-lubricated hydrodynamic journal bearings
,”
J. Mar. Sci. Environ.
10
(
7
),
927
(
2022
).
43.
Y.
Gu
,
J.
Li
,
P.
Wang
,
L.
Cheng
,
Y.
Qiu
,
C.
Wang
, and
Q.
Si
, “
An improved one-dimensional flow model for side chambers of centrifugal pumps considering the blade slip factor
,”
J. Fluids Eng.
144
(
9
),
091207
(
2022
).
44.
L.
Rong
,
M.
Böhle
, and
Y.
Gu
, “
Improving the hydraulic performance of a high-speed submersible axial flow pump based on CFD technology
,”
Int. J. Fluid Eng.
1
(
1
),
013902
(
2024
).
45.
G.
Besagni
and
F.
Inzoli
, “
Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches
,”
Appl. Therm. Eng.
117
,
122
144
(
2017
).
You do not currently have access to this content.