Transition to turbulence in pipe has been extensively studied but is still not completely understood and even more for non-Newtonian fluids. We focus here on yield stress shear-thinning fluids and the mechanism leading to the transition in pipe, the so-called rheo-inertial transition to turbulence. An experimental setup has enabled us to identify flow regimes in a cylindrical pipe, using both flow visualizations and pressure drops measurements for a range of Reynolds numbers. We delimited the non-Newtonian specific regime in the laminar-turbulent transition triggered at a critical Reynolds number below the turbulent puffs onset. This pre-transition regime is associated with a velocity profile asymmetry in which its degree and position evolve as the Reynolds number increases. The origin for the stability of this rheo-inertial regime is discussed, as it could be due to a competition between the nonlinear contributions of rheological behavior and flow inertia. Beyond this regime, we quantified the intermittence of puff transit, revealing the delay to turbulence. We spotted for the first time a different rheo-inertial transitional behavior in the intermittency evolution vs Reynolds number, displaying a smoother transition on a broader range. Finally, the critical Reynolds numbers for different yield stresses are compared with previous works, and the novelty is the linear increase in the delay to turbulent puffs with the yield stress.

1.
A.
Dash
and
C.
Poelma
, “
Long-time-scale transients in an industrial-scale slurry pipeline near the laminar-turbulent transition
,”
Flow
2
,
E25
(
2022
).
2.
Y.
Dubief
,
V. E.
Terrapon
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Annu. Rev. Fluid Mech.
55
,
675
705
(
2022
).
3.
W.
Hogendoorn
,
B.
Chandra
, and
C.
Poelma
, “
Onset of turbulence in particle-laden pipe flows
,”
Phys. Rev. Fluids
7
,
L042301
(
2022
).
4.
B.
Chandra
,
V.
Shankar
, and
D.
Das
, “
Early transition, relaminarization and drag reduction in the flow of polymer solutions through microtubes
,”
J. Fluid Mech.
885
,
A47
(
2020
).
5.
N.
Agrawal
,
G. H.
Choueiri
, and
B.
Hof
, “
Transition to turbulence in particle laden flows
,”
Phys. Rev. Lett.
122
,
114502
(
2019
).
6.
F. T.
Pinho
and
J. H.
Whitelaw
, “
Flow of non-Newtonian fluids in a pipe
,”
J. Non-Newtonian Fluid Mech.
34
,
129
144
(
1990
).
7.
A.
Chekila
, “
Analyse non linéaire de la stabilité de l'écoulement de Poiseuille plan d'un fluide rhéofluidifiant
,” Ph.D. thesis (
University of Lorraine
,
2014
).
8.
M. P.
Escudier
and
F.
Presti
, “
Pipe flow of a thixotropic liquid
,”
J. Non-Newtonian Fluid Mech.
62
,
291
306
(
1996
).
9.
J.
Peixinho
,
C.
Nouar
,
C.
Desaubry
, and
B.
Théron
, “
Laminar transitional and turbulent flow of yield stress fluid in a pipe
,”
J. Non-Newtonian Fluid Mech.
128
,
172
184
(
2005
).
10.
M. P.
Escudier
,
R. J.
Poole
,
F.
Presti
,
C.
Dales
,
C.
Nouar
,
C.
Desaubry
,
L.
Graham
, and
L.
Pullum
, “
Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids
,”
J. Non-Newtonian Fluid Mech.
127
,
143
155
(
2005
).
11.
A.
Esmael
and
C.
Nouar
, “
Transitional flow of a yield-stress fluid in a pipe: Evidence of a robust coherent structure
,”
Phys. Rev. E
77
,
057302
(
2008
).
12.
B.
Güzel
,
T.
Burghelea
,
I. A.
Frigaard
, and
D. M.
Martinez
, “
Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow
,”
J. Fluid Mech.
627
,
97
128
(
2009
).
13.
N.
Roland
, “
Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires
,” Ph.D. thesis (
University of Lorraine
,
2010
).
14.
S. N.
López-Carranza
,
M.
Jenny
, and
C.
Nouar
, “
Pipe flow of shear-thinning fluids
,”
C. R. Méc.
340
,
602
618
(
2012
).
15.
B.
Hof
,
C. V.
Doorne
,
J.
Westerweel
,
F.
Nieuwstadt
,
H.
Faisst
,
B.
Eckhardt
,
H.
Wedin
,
R.
Kersweli
, and
F.
Waleffe
, “
Experimental observation of nonlinear traveling waves in turbulent pipe flow
,”
Science
305
,
1594
1598
(
2004
).
16.
S. A.
Bahrani
and
C.
Nouar
, “
Intermittency in the transition to turbulence for a shear-thinning fluid in Hagen-Poiseuille flow
,”
J. Appl. Fluid Mech.
7
,
1
6
(
2014
).
17.
C.
Wen
,
R.
Poole
,
A. P.
Willis
, and
D. J. C.
Dennis
, “
Experimental evidence of symmetry-breaking supercritical transition in pipe flow of shear-thinning fluids
,”
Phys. Rev. Fluids
2
,
031901
(
2017
).
18.
C.
Vavaliaris
,
M.
Beneitez
, and
D. S.
Henningson
, “
Optimal perturbations and transition energy thresholds in boundary layer shear flows
,”
Phys. Rev. Fluids
5
,
062401
(
2020
).
19.
M.
Beneitez
,
Y.
Duguet
,
P.
Schlatter
, and
D. S.
Henningson
, “
Instability of the optimal edge trajectory in the Blasius boundary layer
,”
J. Fluid Mech.
971
,
A42
(
2023
).
20.
G. B.
Froishteter
and
G. V.
Vinogradov
, “
The laminar flow of plastic disperse systems in circular tubes
,”
Rheol. Acta
19
,
239
250
(
1980
).
21.
J. M.
Piau
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges. meso- and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
,
1
29
(
2007
).
22.
N.
Abcha
,
N.
Latrache
,
F.
Dumouchel
, and
I.
Mutabazi
, “
Qualitative relation between reflected light intensity by kalliroscope flakes and velocity field in the Couette-Taylor flow system
,”
Exp. Fluids
45
,
85
94
(
2008
).
23.
M.
Sorgun
,
T. D.
Muftuoglu
, and
I. H.
Gucuyener
, “
Friction factor estimation for turbulent flow of Herschel-Bulkley and power law fluids in pipes
,”
J. Pet. Sci. Eng.
211
,
110044
(
2022
).
24.
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
Transition to turbulence in pipe flow
,”
Annu. Rev. Fluid Mech.
55
,
575
602
(
2022
).
25.
M. I.
Gavarini
,
A.
Bottaro
, and
F. T. M.
Nieuwstadt
, “
Optimal and robust control of streaks in pipe flow
,”
J. Fluid Mech.
537
,
187
219
(
2005
).
26.
C.
Nouar
,
A.
Bottaro
, and
J. P.
Brancher
, “
Delaying transition to turbulence in channel flow: Revisiting the stability of shear thinning fluids
,”
J. Fluid Mech.
592
,
177
194
(
2007
).
27.
C. C. T.
Pringle
and
R. R.
Kerswell
, “
Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow
,”
Phys. Rev. Lett.
99
,
074502
(
2007
).
28.
J.
Rotta
, “
Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr
,”
Ing. Arch.
24
,
258
281
(
1956
).
29.
H.
Bentrad
,
A.
Esmael
,
C.
Nouar
,
A.
Lefevre
, and
N.
Ait-Messaoudene
, “
Energy growth in Hagen-Poiseuille flow of Herschel-Bulkley fluid
,”
J. Non-Newtonian Fluid Mech.
241
,
43
59
(
2017
).
You do not currently have access to this content.