The mechanism of turbulence modulation by bubbles is crucial for understanding and predicting turbulent bubbly flow. In this study, we conducted an experimental investigation of turbulence modulation by bubbles of different sizes in homogeneous isotropic turbulence using two-phase stereo-particle image velocimetry measurement techniques. Two bubble generation methods, electrolysis and porous medium, were employed to generate bubbles in micrometer and millimeter sizes, respectively. The oscillating grid system was utilized to generate homogeneous isotropic turbulence, allowing precise control of turbulent boundary conditions. The ratio of the fluctuating velocities and the comparison between turbulent kinetic energy and average kinetic energy indicated that the generated turbulence was nearly homogeneous and isotropic. With increasing turbulence intensity, micron-sized bubbles transition from suppressing turbulence to enhancing it, while millimeter-sized bubbles exhibit the opposite behavior. Turbulence modulation by millimeter-sized bubbles appears to be nearly isotropic, whereas micrometer-sized bubbles do not exhibit isotropy.

1.
M. R.
Maxey
, “
The motion of small spherical particles in a cellular flow field
,”
Phys. Fluids
30
,
1915
1928
(
1987
).
2.
V.
Mathai
,
D.
Lohse
, and
C.
Sun
, “
Bubbly and buoyant particle-laden turbulent flows
,”
Annu. Rev. Condens. Matter Phys.
11
,
529
559
(
2020
).
3.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
2005
).
4.
P. G.
Saffman
, “
On the rise of small air bubbles in water
,”
J. Fluid Mech.
1
,
249
275
(
1956
).
5.
P. C.
Duineveld
, “
The rise velocity and shape of bubbles in pure water at high Reynolds number
,”
J. Fluid Mech.
292
,
325
332
(
1995
).
6.
Y.
Zhou
,
P.
Kang
,
Z.
Huang
,
P.
Yan
,
J.
Sun
,
J.
Wang
, and
Y.
Yang
, “
Experimental measurement and theoretical analysis on bubble dynamic behaviors in a gas-liquid bubble column
,”
Chem. Eng. Sci.
211
,
115295
(
2020
).
7.
J. C.
Cano-Lozano
,
C.
Martínez-Bazán
,
J.
Magnaudet
, and
J.
Tchoufag
, “
Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability
,”
Phys. Rev. Fluids
1
,
053604
(
2016
).
8.
D.
Lohse
, “
Bubble puzzles: From fundamentals to applications
,”
Phys. Rev. Fluids
3
,
110504
(
2018
).
9.
R. E. G.
Poorte
and
A.
Biesheuvel
, “
Experiments on the motion of gas bubbles in turbulence generated by an active grid
,”
J. Fluid Mech.
461
,
127
154
(
2002
).
10.
A.
Aliseda
and
J. C.
Lasheras
, “
Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow
,”
Phys. Fluids
23
,
093301
(
2011
).
11.
V. N.
Prakash
,
Y.
Tagawa
,
E.
Calzavarini
,
J. M.
Mercado
,
F.
Toschi
,
D.
Lohse
, and
C.
Sun
, “
How gravity and size affect the acceleration statistics of bubbles in turbulence
,”
New J. Phys.
14
,
105017
(
2012
).
12.
D. J.
Ruth
,
M.
Vernet
,
S.
Perrard
, and
L.
Deike
, “
The effect of nonlinear drag on the rise velocity of bubbles in turbulence
,”
J. Fluid Mech.
924
,
A2
(
2021
).
13.
L.
Brandt
and
F.
Coletti
, “
Particle-laden turbulence: Progress and perspectives
,”
Annu. Rev. Fluid Mech.
54
,
159
189
(
2022
).
14.
A.
Innocenti
,
A.
Jaccod
,
S.
Popinet
, and
S.
Chibbaro
, “
Direct numerical simulation of bubble-induced turbulence
,”
J. Fluid Mech.
918
,
A23
(
2021
).
15.
A.
Du Cluzeau
,
G.
Bois
, and
A.
Toutant
, “
Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations
,”
J. Fluid Mech.
866
,
132
168
(
2019
).
16.
Y.
Liao
,
T.
Ma
,
E.
Krepper
,
D.
Lucas
, and
J.
Fröhlich
, “
Application of a novel model for bubble-induced turbulence to bubbly flows in containers and vertical pipes
,”
Chem. Eng. Sci.
202
,
55
69
(
2019
).
17.
A. A.
Troshko
and
Y. A.
Hassan
, “
A two-equation turbulence model of turbulent bubbly flows
,”
Int. J. Multiphase Flow
27
,
1965
2000
(
2001
).
18.
S.
Hosokawa
and
A.
Tomiyama
, “
Bubble-induced pseudo turbulence in laminar pipe flows
,”
Int. J. Heat Fluid Flow
40
,
97
105
(
2013
).
19.
F.
Risso
and
K.
Ellingsen
, “
Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles
,”
J. Fluid Mech.
453
,
395
410
(
2002
).
20.
Y.
Sato
,
M.
Sadatomi
, and
K.
Sekoguchi
, “
Momentum and heat transfer in two-phase bubble flow—II. A comparison between experimental data and theoretical calculations
,”
Int. J. Multiphase Flow
7
,
179
190
(
1981
).
21.
F.
Risso
, “
Agitation, mixing, and transfers induced by bubbles
,”
Annu. Rev. Fluid Mech.
50
,
25
48
(
2018
).
22.
V. N.
Prakash
,
J.
Martínez Mercado
,
L.
van Wijngaarden
,
E.
Mancilla
,
Y.
Tagawa
,
D.
Lohse
, and
C.
Sun
, “
Energy spectra in turbulent bubbly flows
,”
J. Fluid Mech.
791
,
174
190
(
2016
).
23.
E.
Alméras
,
V.
Mathai
,
D.
Lohse
, and
C.
Sun
, “
Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence
,”
J. Fluid Mech.
825
,
1091
1112
(
2017
).
24.
T.
Liu
and
S.
Bankoff
, “
Structure of air-water bubbly flow in a vertical pipe—I. Liquid mean velocity and turbulence measurements
,”
Int. J. Heat Mass Transfer
36
,
1049
1060
(
1993
).
25.
A.
Serizawa
,
I.
Kataoka
, and
I.
Michiyoshi
, “
Turbulence structure of air-water bubbly flow. II. Local properties
,”
Int. J. Multiphase Flow
2
,
235
246
(
1975
).
26.
S.
Wang
,
S.
Lee
,
O.
Jones
, Jr.
, and
R.
Lahey
, Jr.
, “
3-D turbulence structure and phase distribution measurements in bubbly two-phase flows
,”
Int. J. Multiphase Flow
13
,
327
343
(
1987
).
27.
A.
Fujiwara
,
D.
Minato
, and
K.
Hishida
, “
Effect of bubble diameter on modification of turbulence in an upward pipe flow
,”
Int. J. Heat Fluid Flow
25
,
481
488
(
2004
).
28.
M.
Shawkat
,
C.
Ching
, and
M.
Shoukri
, “
Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe
,”
Int. J. Multiphase Flow
34
,
767
785
(
2008
).
29.
S.
So
,
H.
Morikita
,
S.
Takagi
, and
Y.
Matsumoto
, “
Laser Doppler velocimetry measurement of turbulent bubbly channel flow
,”
Exp. Fluids
33
,
135
142
(
2002
).
30.
S. B.
Pope
,
Turbulent Flows
(
Cambridge university Press
,
2000
).
31.
S.
Hosokawa
and
A.
Tomiyama
, “
Turbulence modification in gas-liquid and solid-liquid dispersed two-phase pipe flows
,” in
Third Symposium on Turbulence and Shear Flow Phenomena
(
Begel House Inc
,
2003
).
32.
D.
Molin
,
C.
Marchioli
, and
A.
Soldati
, “
Turbulence modulation and microbubble dynamics in vertical channel flow
,”
Int. J. Multiphase Flow
42
,
80
95
(
2012
).
33.
G.
Huang
,
X.
Lv
,
W.
Chen
,
Y.
Song
,
J.
Yin
, and
D.
Wang
, “
Generation of nearly homogeneous isotropic turbulence using a novel oscillating grid system
,”
Phys. Fluids
36
,
035129
(
2024
).
34.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed. (
Springer
,
Switzerland
,
1998
).
35.
W.-X.
She
,
Q.
Gao
,
Z.-Y.
Zuo
,
X.-W.
Liao
,
L.
Zhao
,
L.-X.
Zhang
,
D.-M.
Nie
, and
X.-M.
Shao
, “
Experimental study on a zigzagging bubble using tomographic particle image velocimetry with shadow image reconstruction
,”
Phys. Fluids
33
,
083313
(
2021
).
36.
Y.
Song
,
Y.
Qian
,
T.
Zhang
,
J.
Yin
, and
D.
Wang
, “
Simultaneous measurements of bubble deformation and breakup with surrounding liquid-phase flow
,”
Exp. Fluids
63
,
1
20
(
2022
).
37.
W.
Chen
,
G.
Huang
,
Y.
Hu
,
Y.
Song
,
J.
Yin
, and
D.
Wang
, “
Two-phase stereo-PIV measurement techniques for gas-liquid two-phase flow—Methodology and validation
,”
Chem. Eng. Sci.
288
,
119787
(
2024
).
38.
W.
Chen
,
G.
Huang
,
S.
Li
,
F.
Yang
,
Y.
Hu
,
J.
Yin
, and
D.
Wang
, “
Experimental study on turbulent characteristics of dispersed bubbly flow in a narrow rectangular channel by two-phase PIV
,”
Int. J. Heat Mass Transfer
219
,
124887
(
2024
).
39.
L.
Ding
and
A.
Goshtasby
, “
On the Canny edge detector
,”
Pattern Recognit.
34
,
721
725
(
2001
).
40.
W.
Chen
,
G.
Huang
,
Y.
Hu
,
J.
Yin
, and
D.
Wang
, “
Experimental study on continuous spectrum bubble generator with a new overlapping bubbles image processing technique
,”
Chem. Eng. Sci.
254
,
117613
(
2022
).
41.
D.
Wen
,
W.
Chen
,
J.
Yin
,
Y.
Song
,
M.
Ren
, and
D.
Wang
, “
Overlapping bubble detection and tracking method based on convolutional neural network and kalman filter
,”
Chem. Eng. Sci.
263
,
118059
(
2022
).
42.
B.
Wieneke
, “
Stereo-PIV using self-calibration on particle images
,”
Exp. Fluids
39
,
267
280
(
2005
).
43.
A.
Sciacchitano
, “
Uncertainty quantification in particle image velocimetry
,”
Meas. Sci. Technol.
30
,
092001
(
2019
).
44.
A.
Sciacchitano
,
B.
Wieneke
, and
F.
Scarano
, “
PIV uncertainty quantification by image matching
,”
Meas. Sci. Technol.
24
,
045302
(
2013
).
You do not currently have access to this content.