Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.

1.
A. H.
Lefebvre
and
V. G.
McDonell
,
Atomization and Sprays, Second
(
CRC Press
,
Boca Raton, FL
,
2017
).
2.
B.
Paquet
,
A.
de Champlain
, and
S.
Kalla
, “
Review of fuel spray distributions to predict performance of rotary atomizers in a slinger gas turbine combustor
,”
Atomization Sprays
26
(
5
),
483
511
(
2016
).
3.
D.
Cerinski
,
M.
Vujanović
,
Z.
Petranović
,
J.
Baleta
,
N.
Samec
, and
M.
Hriberšek
, “
Numerical analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber
,”
Energy Convers. Manage.
220
,
112862
(
2020
).
4.
T.
Morishita
, “
Development of the fuel atomizing device utilizing high rotational speed
,” in
ASME International Gas Turbine Conference and Products Show
,
1981
.
5.
M.
Kuhnhenn
,
M. F.
Luh
,
T. V.
Joensen
,
M.
Reck
,
I. V.
Roisman
, and
C.
Tropea
, “
Modelling of the breakup process of viscous fluids by a high-speed rotary atomizer
,”
Exp. Fluids
59
(
7
),
117
(
2018
).
6.
F.
Tanzim
,
E.
Kontos
, and
D.
White
, “
Generating prediction model of fan width by optimizing paint application process for Electrostatic Rotary Bell atomizer
,”
Results Eng.
13
,
100302
(
2022
).
7.
A. K. M.
Masum
,
T.
Huppertz
,
J.
Chandrapala
,
B.
Adhikari
, and
B.
Zisu
, “
Physicochemical properties of spray-dried model infant milk formula powders: Influence of whey protein-to-casein ratio
,”
Int. Dairy J.
100
,
104565
(
2020
).
8.
M. G.
Bordón
,
N. P. X.
Alasino
,
V.
Martínez
,
R.
Gauna Peter
,
R.
Iturralde
,
P. D.
Ribotta
, and
M. L.
Martínez
, “
Influence of the spray drying operating conditions on the estimated drying kinetics of emulsion single droplets and the properties of microencapsulated chia oil
,”
Powder Technol.
383
,
302
317
(
2021
).
9.
X.
Liu
,
S.
Bu
,
L.
Zhang
,
Y.
Zhou
,
J.
Fang
,
C.
Shi
,
W.
Xu
, and
C.
Xu
, “
Experimental and numerical investigation on evaporation characteristics of high salinity wastewater by rotary spray
,”
Desalination
517
,
115263
(
2021
).
10.
K. H.
Shiu
,
C. P. Y.
Chan
,
K. H.
Koh
,
C. H.
So
,
M.
Farhan
,
C. Y.
Ho
,
T. H.
Wong
, and
K. W. C.
Lai
, “
Remote rotary mixing and spraying of plural component protective coating for underground pipe internal rehabilitation lining
,”
IEEE Robot. Autom. Lett.
7
(
2
),
3114
3121
(
2022
).
11.
P.
Chen
,
F.
Ouyang
,
G.
Wang
,
H.
Qi
,
W.
Xu
,
W.
Yang
,
Y.
Zhang
, and
Y.
Lan
, “
Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters
,”
Ind. Crops Prod.
163
,
113324
(
2021
).
12.
R.-J.
Cheng
,
H.
Zhang
,
Y.
Li
,
Q.
Fang
,
B.
Wang
, and
H.-W.
Ni
, “
Effect of process parameters on dry centrifugal granulation of molten slag by a rotary disk atomizer
,”
J. Iron Steel Res. Int.
28
(
3
),
263
271
(
2021
).
13.
W.
He
,
X.
Lv
,
F.
Pan
,
X.
Li
, and
Z.
Yan
, “
Novel preparation process of iron powders with semisteel by rotary cup atomizer
,”
Powder Technol.
356
,
1087
1096
(
2019
).
14.
Y. H.
Feng
,
Z.
Zhang
,
J.
Gao
,
G. P.
Feng
,
L.
Qiu
,
D. L.
Feng
,
X. X.
Zhang
, and
X.
Zhu
, “
Research status of centrifugal granulation, physical heat recovery and resource utilization of blast furnace slags
,”
J. Anal. Appl. Pyrolysis
157
,
105220
(
2021
).
15.
M. R.
Pendar
,
F.
Rodrigues
,
J. C.
Páscoa
, and
R.
Lima
,
Review of Coating and Curing Processes: Evaluation in Automotive Industry
(
AIP Publishing LLC
,
2022
).
16.
M. R.
Pendar
and
J. C.
Páscoa
, “
Electrostatic painting process: Impact of using connected high-voltage embodiments with rotary bell atomizers on droplets transport and deposition
,” in
ASME Fluids Engineering Division Summer Meeting
,
2022
.
17.
A.
Charanandeh
,
Y.
Seo
,
M.
Khaleghi Kasbi
,
R.
Alidoost Dafsari
,
M. Y.
Hashim
, and
J.
Lee
, “
Experimental and numerical analysis of the internal flow of a rotary atomizer
,”
Chem. Eng. Sci.
267
,
118327
(
2023
).
18.
S. M.
Choi
,
S. H.
Jang
,
D. H.
Lee
, and
G. W.
You
, “
Spray characteristics of the rotating fuel injection system of a micro-jet engine
,”
J. Mech. Sci. Technol.
24
(
2
),
551
558
(
2010
).
19.
W. J. A.
Dahm
,
P. R.
Patel
, and
B. H.
Lerg
, “
Experimental visualizations of liquid breakup regimes in fuel slinger atomization
,”
Atomization Sprays
16
(
8
),
933
944
(
2006
).
20.
D.
Lee
,
G.
You
,
S.
Choi
, and
H.
Huh
, “
Analysis of formation and breakup mechanisms in rotary atomization through spray visualization
,”
J. Visualization
14
(
3
),
273
283
(
2011
).
21.
S.
Rezayat
,
M.
Farshchi
, and
M.
Ghorbanhoseini
, “
Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels
,”
Int. J. Multiphase Flow
111
,
315
338
(
2019
).
22.
M.
Kuhnhenn
,
T. V.
Joensen
,
M.
Reck
,
I. V.
Roisman
, and
C.
Tropea
, “
Study of the internal flow in a rotary atomizer and its influence on the properties of the resulting spray
,”
Int. J. Multiphase Flow
100
,
30
40
(
2018
).
23.
A.
Chakraborty
,
M.
Das
,
S.
Sahu
, and
D.
Maurya
, “
A parametric study on rotary slinger spray characteristics using laser diagnostics
,” in
Proceedings of the National Aerospace Propulsion Conference
, edited by
G.
Sivaramakrishna
,
S. Kishore
Kumar
, and
B. N.
Raghunandan
, (
Springer Nature Singapore
,
Singapore
,
2023
), pp.
615
628
.
24.
M.
Kuhnhenn
,
M. F.
Luh
,
T. V.
Joensen
,
I. V.
Roisman
, and
C.
Tropea
, “
Experimental characterization of spray generated by a rotary atomizer wheel
,” in
ILASS Europe, 28th European Conference on Liquid Atomization and Spray Systems
,
2017
.
25.
N. J.
Bai
,
W. J.
Fan
,
R. C.
Zhang
,
Z. P.
Zou
,
C. X.
Zhang
, and
P. L.
Yan
, “
Numerical investigation into the structural characteristics of a hydrogen dual-swirl combustor with slight temperature rise combustion
,”
Int. J. Hydrogen Energy
46
(
43
),
22646
22658
(
2021
).
26.
D.
Sun
,
W.
Cai
,
C.
Li
, and
J.
Lu
, “
Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger
,”
Energy
234
,
121222
(
2021
).
27.
S.
Sahu
,
A.
Chakraborty
, and
D.
Maurya
, “
Coriolis-induced liquid breakup and spray evolution in a rotary slinger atomizer: Experiments and analysis
,”
Int. J. Multiphase Flow
135
,
103532
(
2021
).
28.
C.
Sescu
,
B. R.
Kucinschi
,
A. A.
Afjeh
, and
K. C.
Masiulaniec
, “
Experimental test rig with results on liquid atomization by slinger injectors
,”
J. Eng. Gas Turbines Power
133
(
11
),
114505
(
2011
).
29.
N.
Sharma
,
W. D.
Bachalo
, and
A. K.
Agarwal
, “
Spray droplet size distribution and droplet velocity measurements in a firing optical engine
,”
Phys. Fluids
32
(
2
),
023304
(
2020
).
30.
X.
Liu
,
R.
Xue
,
Y.
Ruan
,
L.
Chen
,
X.
Zhang
, and
Y.
Hou
, “
Effects of injection pressure difference on droplet size distribution and spray cone angle in spray cooling of liquid nitrogen
,”
Cryogenics
83
,
57
63
(
2017
).
31.
A.
Urbán
,
M.
Zaremba
,
M.
Malý
,
V.
Józsa
, and
J.
Jedelský
, “
Droplet dynamics and size characterization of high-velocity airblast atomization
,”
Int. J. Multiphase Flow
95
,
1
11
(
2017
).
32.
M.
Agaoglou
,
V. J.
García-Garrido
,
U.
Harlander
, and
A. M.
Mancho
, “
Building transport models from baroclinic wave experimental data
,”
Phys. Fluids
36
(
1
),
016611
(
2024
).
33.
S.
Yokota
,
T.
Nagata
,
M.
Kasai
,
Y.
Oka
, and
T.
Nonomura
, “
Base pressure fluctuations on levitated freestream-aligned circular cylinder
,”
Phys. Fluids
36
(
1
),
015112
(
2024
).
34.
J.
Jedelský
,
M.
Malý
,
S. K.
Vankeswaram
,
M.
Zaremba
,
R.
Kardos
,
D.
Csemány
,
A.
Červenec
, and
V.
Józsa
, “
Effects of secondary breakup, collision dynamics, gravity and evaporation on droplet size distribution in a pressure-swirl JET A-1 spray
,”
Fuel
359
,
130103
(
2024
).
35.
E.
Rácz
,
M.
Malý
,
J.
Jedelský
, and
V.
Józsa
, “
Gas-phase velocity estimation in practical sprays by Phase-Doppler technique
,”
Int. J. Multiphase Flow
157
,
104260
(
2022
).
You do not currently have access to this content.