In this paper, direct numerical simulations (DNSs) are performed to investigate the deformation and breakup of an elastoviscoplastic (EVP) droplet in a Newtonian matrix under simple shear flow. The two-phase interface is captured by the volume-of-fluid (VOF) method with adaptive mesh refinement technique. The Saramito model (Bingham model coupled exponential Phan-Thien–Tanner viscoelastic model) is used to characterize the rheological behavior of the droplet. The droplet deformation and conformational state are studied with different Capillary numbers Ca, Weissenberg numbers Wi, and Bingham numbers Bi, which represent the surface tension, elasticity, and yield stress of the droplet, respectively. Our results show that droplet deformation occurs at low Ca, while breakup occurs at high Ca. The droplet non-monotonically deforms with increasing Wi and Bi, while is elongated for higher Ca. In addition, three breakup modes (mid-point pinching, transitional breakup, and homogeneous breakup) are reported for EVP droplets, in which transitional breakup disappears due to the influence of high elasticity. The conformational state of the droplet intuitively demonstrates the change of breakup from horizontal shear to vertical breakup. In spite of the fact that the surface tension always inhibits the deformation of droplets, the present work indicates that Bi has little effect on the deformation with high Wi and high Ca, while the influence is obvious at low Wi and Ca. The observed elastic and plastic effects on droplet deformation and breakup are believed to have significant impacts, as yield stress fluids are widely encountered in industrial applications.

1.
Y. L.
Jie
and
F. S.
Chen
, “
Progress in the application of food-grade emulsions
,”
Foods
11
,
2883
(
2022
).
2.
S.
Mashaghi
,
A.
Abbaspourrad
,
D. A.
Weitz
, and
A. M.
van Oijen
, “
Droplet microfluidics: A tool for biology, chemistry and nanotechnology
,”
TrAC, Trends Anal. Chem.
82
,
118
(
2016
).
3.
Y.
Guo
,
T. C.
Walther
,
M.
Rao
,
N.
Stuurman
,
G.
Goshima
,
K.
Terayama
,
J. S.
Wong
,
R. D.
Vale
,
P.
Walter
, and
R. V.
Farese
, “
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
,”
Nature
453
,
657
(
2008
).
4.
C. Z.
Lin
and
L. J.
Guo
, “
Numerical simulation of drop deformation and breakup in shear flow
,”
Heat Trans. Asian Res.
36
,
286
(
2007
).
5.
H.
Li
and
U.
Sundararaj
, “
Does drop size affect the mechanism of viscoelastic drop breakup?
,”
Phys. Fluids
20
,
053101
(
2008
).
6.
R.
Rivlin
, “
Hydrodynamics of non-Newtonian fluids
,”
Nature
160
,
611
(
1947
).
7.
N. N.
Wang
,
S.
Li
,
L.
Shi
,
X. F.
Yuan
, and
H. H.
Liu
, “
Viscoelastic effects on the deformation and breakup of a droplet on a solid wall in Couette flow
,”
J. Fluid Mech.
963
,
A18
(
2023
).
8.
N. N.
Wang
,
W. L.
Ni
,
D.
Wang
, and
H. H.
Liu
, “
Deformation and breakup behaviors of a Giesekus viscoelastic droplet in Newtonian shear flow
,”
Comput. Fluids
263
,
105970
(
2023
).
9.
Z. Y.
Luo
and
B. F.
Bai
, “
Dynamics of capsules enclosing viscoelastic fluid in simple shear flow
,”
J. Fluid Mech.
840
,
656
(
2018
).
10.
G. I.
Taylor
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. A
138
,
41
(
1932
).
11.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. A
146
,
501
(
1934
).
12.
A.
Einstein
, “
Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen
,”
Ann. Phys.
339
,
591
(
1911
).
13.
R. G.
Cox
, “
The deformation of a drop in a general time-dependent fluid flow
,”
J. Fluid Mech.
37
,
601
(
1969
).
14.
E. J.
Hinch
and
A.
Acrivos
, “
Long slender drops in a simple shear flow
,”
J. Fluid Mech.
98
,
305
(
1980
).
15.
H. P.
Grace
, “
Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems
,”
Chem. Eng. Commun.
14
,
225
(
1982
).
16.
J.
Rallison
, “
The deformation of small viscous drops and bubbles in shear flows
,”
Annu. Rev. Fluid Mech.
16
,
45
(
1984
).
17.
C. Z.
Lin
and
L. J.
Guo
, “
Experimental study of drop deformation and breakup in simple shear flows
,”
Chin. J. Chem. Eng.
15
,
1
(
2007
).
18.
V.
Cristini
,
S.
Guido
,
A.
Alfani
,
J.
Bławzdziewicz
, and
M.
Loewenberg
, “
Drop breakup and fragment size distribution in shear flow
,”
J. Rheol.
47
,
1283
(
2003
).
19.
J.
Zhou
and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
,
113
(
2020
).
20.
R. W.
Flumerfelt
, “
Drop breakup in simple shear fields of viscoleastic fluids
,”
Ind. Eng. Chem. Fund.
11
,
312
(
1972
).
21.
J. J.
Elmendorp
and
R. J.
Maalcke
, “
A study on polymer blending microrheology: Part 1
,”
Polym. Eng. Sci.
25
,
1041
(
1985
).
22.
F.
Mighri
,
P. J.
Carreau
, and
A.
Ajji
, “
Influence of elastic properties on drop deformation and breakup in shear flow
,”
J. Rheol.
42
,
1477
(
1998
).
23.
P. T.
Yue
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
Viscoelastic effects on drop deformation in steady shear
,”
J. Fluid Mech.
540
,
427
(
2005
).
24.
E. M.
Toose
,
B. J.
Geurts
, and
J. G. M.
Kuerten
, “
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
,”
J. Non-Newtonian Fluid Mech.
60
,
129
(
1995
).
25.
S. B.
Pillapakkam
and
P.
Singh
, “
A level-set method for computing solutions to viscoelastic two-phase flow
,”
J. Comput. Phys.
174
,
552
(
2001
).
26.
N.
Aggarwal
and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
(
2007
).
27.
N.
Aggarwal
and
K.
Sarkar
, “
Rheology of an emulsion of viscoelastic drops in steady shear
,”
J. Non-Newtonian Fluid Mech.
150
,
19
(
2008
).
28.
S.
Mukherjee
and
K.
Sarkar
, “
Effects of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Non-Newtonian Fluid Mech.
160
,
104
(
2009
).
29.
K.
Verhulst
,
R.
Cardinaels
,
P.
Moldenaers
,
Y.
Renardy
, and
S.
Afkhami
, “
Influence of viscoelasticity on drop deformation and orientation in shear flow: Part 1. Stationary states
,”
J. Non-Newtonian Fluid Mech.
156
,
29
(
2009
).
30.
R.
Cardinaels
,
S.
Afkhami
,
Y.
Renardy
, and
P.
Moldenaers
, “
An experimental and numerical investigation of the dynamics of microconfined droplets in systems with one viscoelastic phase
,”
J. Non-Newtonian Fluid Mech.
166
,
52
(
2011
).
31.
S.
Guido
, “
Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity
,”
Curr. Opin. Colloid Interface Sci.
16
,
61
(
2011
).
32.
A.
Gupta
and
M.
Sbragaglia
, “
Deformation and breakup of viscoelastic droplets in confined shear flow
,”
Phys. Rev. E
90
,
023305
(
2014
).
33.
J.
Gounley
,
G.
Boedec
,
M.
Jaeger
, and
M.
Leonetti
, “
Influence of surface viscosity on droplets in shear flow
,”
J. Fluid Mech.
791
,
464
(
2016
).
34.
D.
Wang
,
D. S.
Tan
,
B. C.
Khoo
,
Z. Y.
Ouyang
, and
N.
Phan-Thien
, “
A lattice Boltzmann modeling of viscoelastic drops' deformation and breakup in simple shear flows
,”
Phys. Fluids
32
,
123101
(
2020
).
35.
I.
Valizadeh
,
T.
Tayyarian
, and
O.
Weeger
, “
Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization
,”
Addit. Manuf.
72
,
103641
(
2023
).
36.
K.
Isukwem
,
J.
Godefroid
,
C.
Monteux
,
D.
Bouttes
,
R.
Castellani
,
E.
Hachem
,
R.
Valette
, and
A.
Pereira
, “
The role of viscoplastic drop shape in impact
,”
J. Fluid Mech.
978
,
A1
(
2024
).
37.
X. Y.
Xiang
,
Z. D.
Wang
,
Y. P.
Dong
,
C. Y.
Zhu
,
T. Y.
Feng
,
Y. G.
Ma
, and
T. T.
Fu
, “
Droplet formation of yield stress fluids in asymmetric parallelized microchannels
,”
Chem. Eng. Sci.
285
,
119561
(
2024
).
38.
B.
Nath
,
M. P.
Borthakur
, and
G.
Biswas
, “
Electric field induced dynamics of viscoplastic droplets in shear flow
,”
Phys. Fluids
32
,
092110
(
2020
).
39.
D.
Izbassarov
and
O.
Tammisola
, “
Dynamics of an elastoviscoplastic droplet in a Newtonian medium under shear flow
,”
Phys. Rev. Fluids
5
,
113301
(
2020
).
40.
P.
Saramito
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
145
,
1
(
2007
).
41.
N. P.
Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
(
1977
).
42.
N.
Phan-Thien
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
,
259
(
1978
).
43.
W. J.
Yuan
,
M. Q.
Zhang
,
B. C.
Khoo
, and
N.
Phan-Thien
, “
Dynamics and deformation of a three-dimensional bubble rising in viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
285
,
104408
(
2020
).
44.
C. W.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
45.
S.
Derakhshan
,
A. A.
Kamyabi
, and
A.
Mohebbi
, “
Simulation of drop deformation and breakup in simple shear flow
,”
Korea-Aust. Rheol. J.
(published online
2024
).
46.
Z. Y.
Luo
,
X. L.
Shang
, and
B. F.
Bai
, “
Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow
,”
J. Fluid Mech.
858
,
91
(
2019
).
47.
W. J.
Yuan
,
M. Q.
Zhang
,
B. C.
Khoo
, and
N.
Phan-Thien
, “
On a vertical chain of small bubbles ascending in a viscoelastic fluid
,”
Phys. Fluids
33
,
101704
(
2021
).
48.
Q.
Ba
,
W.
Yuan
, and
M.
Mei
, “
On the effects of fluid elasticity and gas holdup on Taylor bubble rising dynamics in viscoelastic media
,”
Phys. Fluids
35
,
023106
(
2023
).
49.
Y. S.
Li
,
W. J.
Yuan
,
Q. X.
Ba
,
M.
Mei
, and
W. T.
Wu
, “
Numerical investigation on the bubble rising dynamics in ratchet channels filled with viscoelastic liquids
,”
Phys. Fluids
35
,
083116
(
2023
).
50.
H. F.
Zhang
,
F. H.
Ye
,
F.
Chen
,
W. J.
Yuan
, and
W. T.
Yan
, “
Numerical investigation on the viscoelastic polymer flow in material extrusion additive manufacturing
,”
Addit. Manuf.
81
,
103992
(
2024
).
51.
L.
Duan
,
W. J.
Yuan
,
N. J.
Hao
, and
M.
Mei
, “
Polymeric droplet formation and flow pattern evolution in capillary microchannels: Effect of fluid elasticity
,”
Phys. Fluids
36
,
033112
(
2024
).
52.
A.
Amani
,
N.
Balcázar
,
J.
Castro
, and
A.
Oliva
, “
Numerical study of droplet deformation in shear flow using a conservative level-set method
,”
Chem. Eng. Sci.
207
,
153
(
2019
).
53.
W. L.
Zhu
,
N. B.
Zhao
,
X. B.
Jia
,
X.
Chen
, and
H. T.
Zheng
, “
Effect of airflow pressure on the droplet breakup in the shear breakup regime
,”
Phys. Fluids
33
,
053309
(
2021
).
54.
A. R.
Malipeddi
,
A.
Tarafder
, and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in time-dependent extensional flows with finite inertia
,”
J. Non-Newtonian Fluid Mech.
321
,
105108
(
2023
).
55.
D.
Izbassarov
,
M.
Rosti
,
M.
Ardekani
,
M.
Sarabian
,
S.
Hormozi
,
L.
Brandt
, and
O.
Tammisola
, “
Computational modeling of multiphase viscoelastic and elastoviscoplastic flows
,”
Numer. Methods Fluids
88
,
521
(
2018
).
56.
D.
Wang
,
N. N.
Wang
, and
H. H.
Liu
, “
Droplet deformation and breakup in shear-thinning viscoelastic fluid under simple shear flow
,”
J. Rheol.
66
,
585
(
2022
).
57.
N.
Barai
and
N.
Mandal
, “
Breakup modes of fluid drops in confined shear flows
,”
Phys. Fluids
28
,
073302
(
2016
).
58.
J.
Li
,
Y. Y.
Renardy
, and
M.
Renardy
, “
Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method
,”
Phys. Fluids
12
,
269
(
2000
).
59.
A. E.
Komrakova
,
O.
Shardt
,
D.
Eskin
, and
J. J.
Derksen
, “
Lattice Boltzmann simulations of drop deformation and breakup in shear flow
,”
Int. J. Multiphase Flow
59
,
24
(
2014
).
You do not currently have access to this content.