The linear and weakly nonlinear stability of viscoelastic film flowing down a slippery inclined plane is investigated analytically. Under the assumption of the long wave approximation, the first-order Benny equation of Oldroyd-B fluid thin film with slip condition is obtained. Through the normal mode analysis, the neutral stability curve and the temporal growth rates are calculated to explore the linear stability of the film. Linear results show that the critical Reynolds number decreases with the increase in slip length and viscoelastic parameter and that the liquid film may exhibit pure elastic instability. For the nonlinear stability analysis, both hydrodynamic instability and elastic instability are discussed. The primary bifurcations in the phase plane are identified by calculating the Landau coefficient, i.e., the unconditional stable region, the supercritical region, the subcritical region, and the explosive region. The dependence of primary bifurcation regions upon the slip length and Deborah number are studied, and the results indicate that the slip boundary and viscoelasticity destabilizes the flow. According to the Ginzburg–Landau equation, the threshold amplitude of the nonlinear equilibrium solution is analyzed as well.

1.
N.
Brauner
and
D. M.
Maron
, “
Characteristics of inclined thin films, waviness and the associated mass transfer
,”
Int. J. Heat Mass Transfer
25
,
99
110
(
1982
).
2.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
3.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
4.
P. L.
Kapitza
, “
Wave flow of thin layers of viscous liquid. Part I. Free flow
,”
Zh. Eksp. Teor. Fiz.
18
,
3
28
(
1948
); Collected Papers of P. L. Kapitza (Pergamon, New York, 1965).
5.
P. L.
Kapitza
and
S. P.
Kapitza
, “
Wave flow of thin layers of viscous liquids. Part III. Experimental research of a wave flow regime
,”
Zh. Eksp. Teor. Fiz.
19
,
105
120
(
1949
).
6.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
573
(
1957
).
7.
C. S.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
334
(
1963
).
8.
R. E.
Kelly
,
D. A.
Goussis
,
S. P.
Lin
, and
F. K.
Hsu
, “
The mechanism for surface wave instability in film flow down an inclined plane
,”
Phys. Fluids A
1
,
819
828
(
1989
).
9.
C. C.
Lin
,
The Theory of Hydrodynamic Stability
(
Cambridge University Press
,
1955
).
10.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
1961
).
11.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer
,
2011
).
12.
L. D.
Landau
, “
On the problem of turbulence
,”
Compt. Rend. Acad. Sci. URSS
44
,
311
(
1944
).
13.
J. T.
Stuart
, “
On the non-linear mechanics of hydrodynamic stability
,”
J. Fluid Mech.
4
,
1
21
(
1958
).
14.
J. T.
Stuart
, “
On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow
,”
J. Fluid Mech.
9
,
353
370
(
1960
).
15.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
155
(
1966
).
16.
C.
Nakaya
, “
Long waves on a thin fluid layer flowing down an inclined plane
,”
Phys. Fluids
18
,
1407
1412
(
1975
).
17.
S. P.
Lin
, “
Finite amplitude side-band stability of a viscous film
,”
J. Fluid Mech.
63
,
417
429
(
1974
).
18.
C.-C.
Hwang
and
C.-I.
Weng
, “
Finite-amplitude stability analysis of liquid films down a vertical wall with and without interfacial phase change
,”
Int. J. Multiphase Flow
13
,
803
814
(
1987
).
19.
C.-I.
Hung
,
J.-S.
Tsai
, and
C.-K.
Chen
, “
Nonlinear stability of the thin micropolar liquid film flowing down on a vertical plate
,”
J. Fluids Eng.
118
,
498
505
(
1996
).
20.
J. E.
Dunn
and
K. R.
Rajagopal
, “
Fluids of differential type: Critical review and thermodynamic analysis
,”
Int. J. Eng. Sci.
33
,
689
729
(
1995
).
21.
A.
Samanta
, “
Wave dynamics of a viscoelastic liquid
,”
Int. J. Eng. Sci.
193
,
103954
(
2023
).
22.
B. S.
Dandapat
and
A. S.
Gupta
, “
Long waves on a layer of a visco-elastic fluid down an inclined plane
,”
Rheol. Acta
17
,
492
499
(
1978
).
23.
P. J.
Cheng
,
H. Y.
Lai
, and
C. K.
Chen
, “
Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall
,”
J. Phys. D: Appl. Phys.
33
,
1674
(
2000
).
24.
J.
Zhao
and
Y.
Jian
, “
Effect of odd viscosity on the stability of thin viscoelastic liquid film flowing along an inclined plate
,”
Phys. Scr.
96
,
055214
(
2021
).
25.
E. S.
Shaqfeh
,
R. G.
Larson
, and
G. H.
Fredrickson
, “
The stability of gravity driven viscoelastic film-flow at low to moderate Reynolds number
,”
J. Non-Newtonian Fluid Mech.
31
,
87
113
(
1989
).
26.
S. W.
Joo
, “
The stability and nonlinear flow developments of a viscoelastic draining film with shear thinning
,”
J. Non-Newtonian Fluid Mech.
51
,
125
140
(
1994
).
27.
F.
Kang
and
K. P.
Chen
, “
Nonlinear elastic instability of gravity-driven flow of a thin viscoelastic film down an inclined plane
,”
J. Non-Newtonian Fluid Mech.
57
,
243
252
(
1995
).
28.
J. P.
Pascal
, “
Linear stability of fluid flow down a porous inclined plane
,”
J. Phys. D: Appl. Phys.
32
,
417
(
1999
).
29.
I. M. R.
Sadiq
and
R.
Usha
, “
Thin Newtonian film flow down a porous inclined plane: Stability analysis
,”
Phys. Fluids
20
,
022105
(
2008
).
30.
U.
Thiele
,
B.
Goyeau
, and
M. G.
Velarde
, “
Stability analysis of thin film flow along a heated porous wall
,”
Phys. Fluids
21
,
014103
(
2009
).
31.
R.
Liu
and
Q.
Liu
, “
Instabilities and transient behaviors of a liquid film flowing down a porous inclined plane
,”
Phys. Fluids
22
,
074101
(
2010
).
32.
A.
Samanta
,
B.
Goyeau
, and
C.
Ruyer-Quil
, “
A falling film on a porous medium
,”
J. Fluid Mech.
716
,
414
444
(
2013
).
33.
S.
Chattopadhyay
,
A. S.
Desai
,
A. K.
Gaonkar
,
A. K.
Barua
, and
A.
Mukhopadhyay
, “
Weakly viscoelastic film on a slippery slope
,”
Phys. Fluids
33
,
112107
(
2021
).
34.
M.
Grzelka
,
I.
Antoniuk
,
E.
Drockenmuller
,
A.
Chennevière
,
L.
Léger
, and
F.
Restagno
, “
Viscoelasticity-induced onset of slip at the wall for polymer fluids
,”
ACS Macro Lett.
9
,
924
928
(
2020
).
35.
M.
Grzelka
,
I.
Antoniuk
,
E.
Drockenmuller
,
A.
Chennevière
,
L.
Léger
, and
F.
Restagno
, “
Slip and friction mechanisms at polymer semi-dilute solutions/solid interfaces
,”
Macromolecules
54
,
4910
4917
(
2021
).
36.
S.
Pal
and
A.
Samanta
, “
Effect of imposed shear on the stability of a viscoelastic liquid flowing down a slippery plane
,”
J. Non-Newtonian Fluid Mech.
309
,
104900
(
2022
).
37.
T.
Hu
,
Q.
Fu
,
Y.
Xing
,
L.
Yang
, and
L.
Xie
, “
Stability of a thin viscoelastic film falling down an inclined plane
,”
Phys. Rev. Fluids
6
,
083902
(
2021
).
You do not currently have access to this content.