In this paper, we present a physics-informed approach to tailor the lift profile of an unsteady airfoil through the execution of an appropriate maneuver. In previous research, a low-order aerodynamic model based on the unsteady thin airfoil theory was developed for predicting the flowfield and loads on airfoils undergoing arbitrary motions. The theory was phenomenologically augmented using the concept of leading edge suction parameter (LESP) to incorporate the capability to predict intermittent leading edge vortex (LEV) shedding. The criticality of LESP was used to predict the onset and termination of LEV shedding and thus model the effect of LEVs on the flowfield and loads for a prescribed motion. In the current work, an inverse aerodynamic formulation is developed based on this framework for tackling the inverse problem: to obtain the motion kinematics required for generating a prescribed lift profile for an airfoil operating in the dynamic-stall regime. The LEV-modeling capability of the aerodynamic model enables the motion-design algorithm to take into account the effect of complex phenomena, such as dynamic stall and LEV shedding, which are not taken into account in previous research approaches. Several case studies are presented to demonstrate various scenarios such as lift tracking using pitching and heaving motions, lift cancellation during unsteady motion, and the generation of a given lift profile using two equivalent motions. The kinematic profiles generated by the inverse formulation are also simulated using a high-fidelity unsteady computational fluid dynamics solver to validate the predictions.

1.
Y.
Bai
and
M.
Zheng
, “
Vortex-induced vibrations in an active pitching flapping foil power generator with two degrees of freedom
,”
Phys. Fluids
35
,
103612
(
2023
).
2.
L.
Pla Olea
and
H. E.
Taha
, “
Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall
,”
Phys. Fluids
36
,
037116
(
2024
).
3.
S.
Ahnn
and
H.
Choi
, “
Leading-edge vortex and aerodynamic performance scaling in a simplified vertical-axis wind turbine
,”
Phys. Fluids
35
,
105140
(
2023
).
4.
S. R.
Selvarajoo
and
Z.
Mohamed-Kassim
, “
The effects of dynamic stalls on the aerodynamics and performance of a Darrieus rotor during self-start
,”
Phys. Fluids
36
,
015143
(
2024
).
5.
M. L.
Post
and
T. C.
Corke
, “
Separation control on high angle of attack airfoil using plasma actuators
,”
AIAA J.
42
,
2177
2184
(
2004
).
6.
L.
Xia
,
Y.
Hua
, and
J. G.
Zheng
, “
Numerical investigation of flow separation control over an airfoil using fluidic oscillator
,”
Phys. Fluids
33
,
065107
(
2021
).
7.
T.
Albrecht
,
T.
Weier
,
G.
Gerbeth
,
B.
Monnier
, and
D. R.
Williams
, “
Separated flow response to single pulse actuation
,”
AIAA J.
53
,
190
199
(
2015
).
8.
H.
Yu
and
J.
Zheng
, “
Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators
,”
Phys. Fluids
32
,
035103
(
2020
).
9.
K.
Taylor
and
M.
Amitay
, “
Dynamic stall process on a finite span model and its control via synthetic jet actuators
,”
Phys. Fluids
27
,
077104
(
2015
).
10.
D.
Greenblatt
,
T.
Schneider
, and
C. Y.
Schüle
, “
Mechanism of flow separation control using plasma actuation
,”
Phys. Fluids
24
,
077102
(
2012
).
11.
L.
Wang
,
L.-H.
Feng
,
Y.
Liang
,
Y.-L.
Chen
, and
Z.-Y.
Li
, “
Vortex control strategy for unsteady aerodynamic optimization of a plunging airfoil at a low reynolds number
,”
Phys. Fluids
33
,
117110
(
2021
).
12.
L.-H.
Feng
,
Z.-Y.
Li
, and
Y.-L.
Chen
, “
Lift enhancement strategy and mechanism for a plunging airfoil based on vortex control
,”
Phys. Fluids
32
,
087116
(
2020
).
13.
B. L. O.
Ramos
,
W. R.
Wolf
,
C.-A.
Yeh
, and
K.
Taira
, “
Active flow control for drag reduction of a plunging airfoil under deep dynamic stall
,”
Phys. Rev. Fluids
4
,
074603
(
2019
).
14.
M. S.
Chandrasekhara
,
M. C.
Wilder
, and
L. W.
Carr
, “
Unsteady stall control using dynamically deforming airfoils
,”
AIAA J.
36
,
1792
1800
(
1998
).
15.
P.
Gerontakos
and
T.
Lee
, “
Dynamic stall flow control via a trailing-edge flap
,”
AIAA J.
44
,
469
480
(
2006
).
16.
A.
Medina
,
M. S.
Hemati
, and
M.
Rockwood
, “
Separated flow response to rapid flap deflection
,”
AIAA J.
58
(published online
2020
).
17.
A.
Arredondo-Galeana
,
A. M.
Young
,
A. S.
Smyth
, and
I. M.
Viola
, “
Unsteady load mitigation through a passive trailing-edge flap
,”
J. Fluids Struct.
106
,
103352
(
2021
).
18.
S.
Bull
,
N.
Chiereghin
,
D. J.
Cleaver
, and
I.
Gursul
, “
Novel approach to leading-edge vortex suppression
,”
AIAA J.
58
,
4212
4227
(
2020
).
19.
A.
Le Pape
,
M.
Costes
,
F.
Richez
,
G.
Joubert
,
F.
David
, and
J.-M.
Deluc
, “
Dynamic stall control using deployable leading-edge vortex generators
,”
AIAA J.
50
,
2135
2145
(
2012
).
20.
M.
Zhao
,
L.
Xu
,
Z.
Tang
,
X.
Zhang
,
B.
Zhao
,
Z.
Liu
, and
Z.
Wei
, “
Onset of dynamic stall of tubercled wings
,”
Phys. Fluids
33
,
081909
(
2021
).
21.
H.
Bao
,
B.
Song
,
W.
Yang
, and
D.
Xue
, “
The function of the alula with different geometric parameters on the flapping wing
,”
Phys. Fluids
33
,
101907
(
2021
).
22.
T.
Linehan
and
K.
Mohseni
, “
On the maintenance of an attached leading-edge vortex via model bird alula
,”
J. Fluid Mech.
897
,
A17
(
2020
).
23.
D.
Rival
,
T.
Prangemeier
, and
C.
Tropea
, “
The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight
,”
Exp. Fluids
46
,
823
833
(
2009
).
24.
N. J.
Wei
,
J.
Kissing
, and
C.
Tropea
, “
Generation of periodic gusts with a pitching and plunging airfoil
,”
Exp. Fluids
60
,
166
(
2019
).
25.
X.
Xu
and
F. D.
Lagor
, “
Quasi-steady effective angle of attack and its use in lift-equivalent motion design
,”
AIAA J.
59
,
2613
2626
(
2021
).
26.
G.
Sedky
,
A. R.
Jones
, and
F. D.
Lagor
, “
Lift regulation during transverse gust encounters using a modified Goman-Khrabrov model
,”
AIAA J.
58
,
3788
3798
(
2020
).
27.
I. A.
Angulo
and
H.
Babinsky
, “
Unsteady modelling of pitching wings for gust mitigation
,” AIAA Paper No. 2021-1999,
2021
.
28.
G. Z.
McGowan
,
K.
Granlund
,
M. V.
Ol
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Investigations of lift-based pitch-plunge equivalence for airfoils at low Reynolds numbers
,”
AIAA J.
49
,
1511
1524
(
2011
).
29.
K. H.
Elfering
and
K. O.
Granlund
, “
Lift equivalence and cancellation for airfoil surge-pitch-plunge oscillations
,”
AIAA J.
58
,
4629
4643
(
2020
).
30.
A.
Medina
and
M. S.
Hemati
, “
Lift disturbance cancellation with rapid-flap actuation
,”
AIAA J.
59
,
4367
4379
(
2021
).
31.
T.
Theodorsen
, “
General theory of aerodynamic instabililty and the mechanism of flutter
,” Report No. NACA-TR-496 (National Advisory Committee for Aeronautics,
1935
).
32.
K.
Ramesh
,
A.
Gopalarathnam
,
K.
Granlund
,
M. V.
Ol
, and
J. R.
Edwards
, “
Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding
,”
J. Fluid Mech.
751
,
500
538
(
2014
).
33.
A.
SureshBabu
,
S.
Narsipur
,
M.
Bryant
, and
A.
Gopalarathnam
, “
Leading-edge-vortex tailoring on unsteady airfoils using an inverse aerodynamic approach
,”
Phys. Fluids
34
,
057107
(
2022
).
34.
S.
Narsipur
,
P.
Hosangadi
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Variation of leading-edge suction during stall for unsteady aerofoil motions
,”
J. Fluid Mech.
900
,
A25
(
2020
).
35.
S.
Narsipur
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Low-order model for prediction of trailing-edge separation in unsteady flow
,”
AIAA J.
57
,
191
207
(
2019
).
36.
A.
SureshBabu
,
A.
Medina
,
M.
Rockwood
,
M.
Bryant
, and
A.
Gopalarathnam
, “
Theoretical and experimental investigation of an unsteady airfoil in the presence of external flow disturbances
,”
J. Fluid Mech.
921
,
A21
(
2021
).
37.
Y.
Hirato
,
M.
Shen
,
A.
Gopalarathnam
, and
J. R.
Edwards
, “
Flow criticality governs leading-edge-vortex initiation on finite wings in unsteady flow
,”
J. Fluid Mech.
910
,
A1
(
2021
).
38.
A.
SureshBabu
,
K.
Ramesh
, and
A.
Gopalarathnam
, “
Model reduction in discrete-vortex methods for unsteady airfoil flows
,”
AIAA J.
57
,
1409
1422
(
2019
).
39.
D. A.
Cassidy
,
J. R.
Edwards
, and
M.
Tian
, “
An investigation of interface-sharpening schemes for multiphase mixture flows
,”
J. Comput. Phys.
228
,
5628
5649
(
2009
).
40.
P. R.
Spalart
and
S. R.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. 92-0439,
1992
.
41.
J. R.
Edwards
and
S.
Chandra
, “
Comparison of eddy viscosity—Transport turbulence models for three-dimensional, shock-separated flowfields
,”
AIAA J.
34
,
756
763
(
1996
).
42.
K.
Elfering
,
S.
Narsipur
, and
K.
Granlund
, “
High streamwise airfoil oscillations at constant low and high incidence angles
,”
Phys. Fluids
34
,
087107
(
2022
).
43.
S.
Sudharsan
,
S.
Narsipur
, and
A.
Sharma
, “
Evaluating dynamic stall-onset criteria for mixed and trailing-edge stall
,”
AIAA J.
61
,
1181
1196
(
2023
).
44.
Y. T.
Lee
,
A.
Gementzopoulos
,
N.
Chitrala
,
A.
SureshBabu
,
A.
Jones
, and
A.
Gopalarathnam
, “
Combined theoretical and experimental investigation of airfoil encountering transverse gust
,” AIAA Paper No. 2023-4012,
2023
.
You do not currently have access to this content.