Yam mucilage is a novel environmentally friendly drag reducer. This study investigates drag reduction and degradation characteristics of Chinese yam mucilage, using an in-house rotor device. The effects of temperature, aging, and salts on the drag reduction rate (DR) of yam mucilage were also explored. Furthermore, the synergistic drag reduction properties of Chinese yam-polyethylene oxide (PEO) solution were investigated by blending Chinese yam mucilage with PEO. The rotational speed range of the rotor device was set at 200–700 r/min, corresponding to Reynolds numbers (Re) ranging from 30 396 to 106 385. The results demonstrated that the DR of yam mucilage initially increased, and then decreased at low concentrations, with increasing Re. Conversely, the DR of yam mucilage at high concentrations increased with increasing Re, albeit at a gradually slowing rate as concentration increased; however, the shear stability was gradually enhanced. Degradation testing revealed that yam slime exhibited semi-rigid, or rigid polymer characteristics, with notable shear stability. At a concentration of 2000 ppm and Re = 106 385, the maximum DR reached 44.1%. Prolonged heating and standing resulted in the reduced DR of yam mucilage. However, salt ions exerted dual effects on the DR of yam mucilage: Low concentrations of NaCl improved its effectiveness while Na2SO4 and high concentrations of NaCl diminished its efficacy. The addition of a small quantity of PEO was found to significantly enhance the drag reduction efficacy of yam mucilage, but no significant improvement in the shear stability of yam mucilage was observed. Yam mucilage exhibits promising potential as an environmentally friendly drag reducer with remarkable drag reduction capabilities.

1.
B. A.
Toms
, “
Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers
,” in
Proceedings of the 1st International Congress on Rheology
(
North Holland
,
Amsterdam
,
1948
), pp.
135
138
.
2.
L.
Warwaruk
and
S.
Ghaemi
, “
Near-wall lubricating layer in drag-reduced flows of rigid polymers
,”
Phys. Rev. Fluids
7
,
064605
(
2022
).
3.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
4.
C. A.
Kim
,
J. T.
Kim
,
K.
Lee
et al, “
Mechanical degradation of dilute polymer solutions under turbulent flow
,”
Polymers
41
(
21
),
7611
7615
(
2000
).
5.
A. S.
Pereira
,
R. M.
Andrade
, and
E. J.
Soares
, “
Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: Comparison between poly (ethylene oxide), polyacrylamide, and xanthan gum
,”
J. Non-Newtonian Fluid Mech.
202
,
72
87
(
2013
).
6.
E. J.
Soares
,
R. N.
Siqueira
,
L. v
Leal
et al, “
The role played by the aging of aloe vera on its drag reduction properties in turbulent flows
,”
J. Non-Newtonian Fluid Mech.
265
,
1
10
(
2019
).
7.
G. E.
Gadd
, “
Turbulence damping and drag reduction produced by certain additives in water
,”
Nature
206
,
463
467
(
1965
).
8.
C. A.
Kim
,
S. T.
Lim
,
H. J.
Choi
et al, “
Characterization of drag reducing guar gum in a rotating disk flow
,”
J. Appl. Polym. Sci.
83
,
2938
2944
(
2002
).
9.
N. B.
Wyatt
,
C. M.
Gunther
, and
M. W.
Liberatore
, “
Drag reduction effectiveness of dilute and entangled xanthan in turbulent pipe flow
,”
J. Non-Newtonian Fluid Mech.
166
,
25
31
(
2011
).
10.
M.
Campolo
,
M.
Simeoni
,
R.
Lapasin
et al, “
Turbulent drag reduction by biopolymers in large scale pipes
,”
J. Fluids Eng.-Trans. ASME
137
,
041102
(
2015
).
11.
H. K. A. P. G.
Singh
,
A.
Jaafar
, and
S.
Yusup
, “
The effect of sodium hydroxide on drag reduction using a biopolymer
,”
MATEC Web Conf.
13
,
02030
(
2014
).
12.
S.
Salehudin
and
S.
Ridha
, “
Coconut residue as biopolymer drag reducer agent in water injection system
,”
Int. J. Appl. Eng. Res.
11
,
8037
8040
(
2016
).
13.
K.
Gasljevic
,
K.
Hall
,
D.
Chapman
et al, “
Drag-reducing polysaccharides from marine microalgae: Species productivity and drag reduction effectiveness
,”
J. Appl. Phycol.
20
,
299
310
(
2008
).
14.
S.
Ogata
,
Gunawan
,
J.
Warashina
et al, “
Drag reduction of a pipe flow using nata de coco suspensions
,”
Adv. Mech.
6
,
651260
(
2014
).
15.
W. R.
dos Santos
,
E.
Spalenza Caser
,
E. J.
Soares
et al, “
Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer
,”
J. Non-Newtonian Fluid Mech.
276
,
104223
(
2020
).
16.
L.
Xie
,
L.
Jiang
,
F. Z.
Meng
et al, “
Development and performance of a gelatin-based bio-polysaccharide drag reduction coating
,”
Phys. Fluids
35
,
053112
(
2023
).
17.
K. S.
Sokhal
,
D.
Gangacharyulu
, and
V. K.
Bulasara
, “
Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe
,”
Carbohydr. Polym.
181
,
1017
1025
(
2018
).
18.
A. I.
Dosumu
,
L. C.
Edomwonyi-Otu
,
N.
Yusuf
et al, “
Guar gum as flow improver in single-phase water and liquid-liquid flows
,”
Arab. J. Sci. Eng.
45
,
7267
7273
(
2020
).
19.
M.
Habibpour
,
S.
Koteeswaran
, and
P. E.
Clark
, “
Drag reduction behavior of hydrolyzed polyacrylamide/polysaccharide mixed polymer solutions-effect of solution salinity and polymer concentration
,”
Rheol. Acta
56
,
683
694
(
2017
).
20.
G.
Dingilia
and
E.
Ruckenst
, “
Positive and negative deviations from additivity in drag reduction of binary dilute polymer-solutions
,”
AIChE J.
20
,
1222
1224
(
1974
).
21.
W. K.
Lee
,
R. C.
Vaseleski
, and
A. B.
Metzner
, “
Turbulent drag reduction in polymeric solutions containing suspended fibers
,”
AIChE J.
20
,
128
133
(
1974
).
22.
J. P.
Malhotra
,
P. N.
Chaturvedi
, and
R. P.
Singh
, “
Shear stability studies on polymer-polymer and polymer-fiber mixtures
,”
Rheol. Acta
26
,
31
39
(
1987
).
23.
G. A. B.
Sandoval
and
E. J.
Soares
, “
Effect of combined polymers on the loss of efficiency caused by mechanical degradation in drag reducing flows through straight tubes
,”
Rheol. Acta
55
,
559
569
(
2016
).
24.
G. L.
Novelli
,
L. A.
Ferrari
,
G. G.
Vargas
et al, “
A synergistic analysis of drag reduction on binary polymer mixtures containing guar gum
,”
Int. J. Biol. Macromol.
137
,
1121
1129
(
2019
).
25.
P. F.
Shi
,
H. B.
Hu
,
J.
Wen
et al, “
Drag reduction and degradation of binary polymer solutions
,”
J. Non-Newtonian Fluid Mech.
(to be published).
26.
H. A.
Abdul Bari
,
M. A.
Ahmad
, and
R. B. M.
Yunus
, “
Formulation of okra-natural mucilage as drag reducing agent in different size of galvanized iron pipes in turbulent water flowing system
,”
J. Appl. Sci.
10
,
3105
3110
(
2010
).
27.
E. C.
Coelho
,
K. C. O.
Barbosa
,
E. J.
Soares
et al, “
Okra as a drag reducer for high Reynolds numbers water flows
,”
Rheol. Acta
55
,
983
991
(
2016
).
28.
H. A.
Abdul Bari
,
K.
Letchmanan
, and
R. M.
Yunus
, “
Drag reduction characteristics using aloe vera natural mucilage: An experimental study
,”
J. Appl. Sci.
11
,
1039
1043
(
2011
).
29.
L.
Xie
,
P. F.
Shi
,
H. R.
Li
et al, “
Drag reduction by natural yam mucilage in turbulent flows
,”
Phys. Fluids
36
,
013114
(
2024
).
30.
F.
Ma
,
X.
Li
,
Z.
Ren
et al, “
Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from dioscorea opposita thunb. and its antioxidant activity
,”
Food Chem.
360
,
130022
(
2021
).
31.
F.
Ma
,
Y.
Zhang
,
N.
Liu
et al, “
Rheological properties of polysaccharides from dioscorea opposita hunb
,”
Food Chem.
227
,
64
72
(
2017
).
32.
C. A.
Kim
,
D. S.
Jo
,
H. J.
Choi
et al, “
A high-precision rotating disk apparatus for drag reduction characterization
,”
Polym. Test.
20
,
43
48
(
2000
).
33.
X.
Dai
,
B.
Li
,
L.
Li
et al, “
Experimental research on the characteristics of drag reduction and mechanical degradation of polyethylene oxide solution
,”
Energy Source, Part A
43
,
944
952
(
2021
).
34.
A.
Rajappan
and
G. H.
McKinley
, “
Epidermal biopolysaccharides from plant seeds enable biodegradable turbulent drag reduction
,”
Sci. Rep.
9
,
18263
(
2019
).
35.
D. P.
Lathrop
,
J.
Fineberg
, and
H. L.
Swinney
, “
Transition to shear-driven turbulence in Couette-Taylor flow
,”
Phys. Rev. A
46
,
6390
6405
(
1992
).
36.
H.
Hu
,
J.
Wen
,
L.
Bao
et al, “
Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips
,”
Sci. Adv.
3
,
e1603288
(
2017
).
37.
A. J.
Greidanus
,
R.
Delfos
, and
J.
Westerweel
,
Drag Reduction by Surface Treatment in Turbulent Taylor-Couette Flow
(
University of Warsaw
,
Warsaw, Poland
,
2011
).
38.
E. J.
Soares
, “
Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows
,”
J. Non-Newtonian Fluid Mech.
276
,
104225
(
2020
).
39.
W.
Brostow
, “
Drag reduction and mechanical degradation in polymer-solutions in flow
,”
Polymers
24
,
631
638
(
1983
).
40.
M.
Habibpour
and
P. E.
Clark
, “
Drag reduction behavior of hydrolyzed polyacrylamide/xanthan gum mixed polymer solution
,”
Pet. Sci.
14
,
412
423
(
2017
).
41.
E. J.
Soares
,
G. A. B.
Sandoval
,
L.
Silveira
et al, “
Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure
,”
Phys. Fluids
27
,
125105
(
2015
).
42.
Q. M.
Li
,
Y.
Li
,
J. H.
Zou
et al, “
Influence of Adding Chinese yam (dioscorea opposita thunb.) flour on dough rheology, gluten structure, baking performance, and antioxidant properties of bread
,”
Foods
9
,
256
(
2020
).
43.
X.
Ji
,
Y.
Luo
,
M.
Shen
et al, “
Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch
,”
Int. J. Biol. Macromol.
192
,
537
545
(
2021
).
44.
F.
Ma
,
A. E.
Bell
, and
F. J.
Davis
, “
Effects of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic
,”
Food Chem.
184
,
114
121
(
2015
).
45.
G.
Mota
and
R. G.
Pereira
, “
The influence of concentration and temperature on the rheological behavior of diutan gum aqueous solutions
,”
Int. J. Polym. Anal. Charact.
26
,
735
(
2021
).
46.
E.
Dschagarowa
and
T.
Bochossian
, “
Drag reduction in polymer mixtures
,”
Rheol. Acta
17
,
426
432
(
1978
).
47.
J. P.
Malhotra
,
P. N.
Chaturvedi
, and
R. P.
Singh
, “
Drag reduction by polymer polymer mixtures
,”
J. Appl. Polym. Sci.
36
,
837
858
(
1988
).
48.
G. V.
Reddy
and
R. P.
Singh
, “
Drag reduction effectiveness and shear stability of polymer-polymer and polymer-fiber mixtures in recirculatory turbulent-flow of water
,”
Rheol. Acta
24
,
296
311
(
1985
).
You do not currently have access to this content.