The existence of electrical potential in plant tissues has been studied for decades to understand its contribution toward the plants' health and developmental aspects. This potential is profoundly controlled and modulated by the electrokinetics involved in the flow navigated through the narrow conduits of a plant, which in turn is primarily governed by circadian rhythms. However, the interconnection between electrokinetics and the diurnal biological clock is yet to be understood. In this work, we unraveled the electrokinetics in response to the diurnal variations of a plant. Experiments conducted on water hyacinth stem indicate a cyclic variation of streaming potential synchronized with the changes introduced by circadian rhythm. In further efforts toward understanding the variation of streaming potential at different flow conditions, experiments were conducted on excised stem segments of Dracaena sanderiana, where the generated potential was studied against varying flow rates with different constitutive features of the flowing electrolyte. Notably, the resulting streaming potential from the flow of electrolytic solutions of different ionic strengths, species, and pH was found to align well with the fundamental premises of electrokinetics. These results are likely to expand our current knowledge of plant hydraulics by diligently examining the electrokinetics involved in the flow circuits of plants that undergo cyclic variations in close association with the circadian rhythms.

1.
A.
Venkat
and
S.
Muneer
, “
Role of circadian rhythms in major plant metabolic and signaling pathways
,”
Front. Plant Sci.
13
,
836244
(
2022
).
2.
A.
Kiełbowicz-Matuk
,
P.
Rey
, and
T.
Rorat
, “
Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene
,”
Ann. Bot.
113
(
5
),
831
842
(
2014
).
3.
K.
Inoue
,
T.
Araki
, and
M.
Endo
, “
Integration of input signals into the gene network in the plant circadian clock
,”
Plant Cell Physiol.
58
(
6
),
977
982
(
2017
).
4.
A. A. R.
Webb
, “
The physiology of circadian rhythms in plants
,”
New Phytol.
160
(
2
),
281
303
(
2003
).
5.
M. J.
Haydon
,
O.
Mielczarek
,
F. C.
Robertson
,
K. E.
Hubbard
, and
A. A. R.
Webb
, “
Photosynthetic entrainment of the Arabidopsis thaliana circadian clock
,”
Nature
502
(
7473
),
689
692
(
2013
).
6.
V. R.
de Dios
,
W. R. L.
Anderegg
,
X.
Li
,
D. T.
Tissue
,
M.
Bahn
,
D.
Landais
,
A.
Milcu
,
Y.
Yao
,
R. H.
Nolan
,
J.
Roy
, and
A.
Gessler
, “
Circadian regulation does not optimize stomatal behaviour
,”
Plants
9
(
9
),
1091
(
2020
).
7.
A.
Sellin
,
E.
Õunapuu
, and
A.
Karusion
, “
Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance
,”
Tree Physiol.
30
(
12
),
1528
1535
(
2010
).
8.
M. T.
Tyree
, “
Plant hydraulics: The ascent of water
,”
Nature
423
(
6943
),
923
923
(
2003
).
9.
A.
Nardini
,
F.
Grego
,
P.
Trifilò
, and
S.
Salleo
, “
Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis
,”
Tree Physiol.
30
(
5
),
628
635
(
2010
).
10.
F. J.
Cabañero
and
M.
Carvajal
, “
Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum, L. plants
,”
J. Plant Physiol.
164
(
10
),
1300
1310
(
2007
).
11.
D. S.
Fensom
, “
The bioelectric potentials of plants and their functional significance: V. Some daily and seasonal changes in the electrical potential and resistance of living trees
,”
Can. J. Bot.
41
(
6
),
831
851
(
1963
).
12.
D.
Gibert
,
J. L.
Le Mouël
,
L.
Lambs
,
F.
Nicollin
, and
F.
Perrier
, “
Sap flow and daily electric potential variations in a tree trunk
,”
Plant Sci.
171
(
5
),
572
584
(
2006
).
13.
Z. Y.
Wang
,
X. H.
Qin
,
J. H.
Li
,
L. F.
Fan
,
Q.
Zhou
,
Y. Q.
Wang
,
X.
Zhao
,
C. J.
Xie
,
Z. Y.
Wang
, and
L.
Huang
, “
Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants
,”
Environ. Exp. Bot.
160
,
120
130
(
2019
).
14.
J.
Fromm
and
R.
Spanswick
, “
Characteristics of action potentials in willow (Salix viminalis L.)
,”
J. Exp. Bot.
44
(
7
),
1119
1125
(
1993
).
15.
J.
Fromm
,
M.
Hajirezaei
, and
I.
Wilke
, “
The biochemical response of electrical signaling in the reproductive system of hibiscus plants
,”
Plant Physiol.
109
(
2
),
375
384
(
1995
).
16.
M.
Islam
,
D.
Janssen
,
D.
Chao
,
J.
Gu
,
D.
Eisen
, and
F.-S.
Choa
, “
Electricity derived from plants
,”
J. Energy Power Eng.
11
(
9
),
614
619
(
2017
).
17.
R.
Hedrich
,
V.
Salvador-Recatalà
, and
I.
Dreyer
, “
Electrical wiring and long-distance plant communication
,”
Trends Plant Sci.
21
(
5
),
376
387
(
2016
).
18.
H.
Okamoto
and
N.
Masaki
, “
Long term measurement of the trans-root electric potential in a persimmon tree in the field
,”
J. Plant Res.
112
(
1
),
123
130
(
1999
).
19.
Z.
Hao
,
W.
Li
,
J.
Kan
,
L.
Jiang
, and
C.
Feng
, “
Bioelectricity in standing trees—A potential energy for wireless sensor networks
,”
Telkomnika
11
(
8
),
4841
4846
(
2013
).
20.
A.
Koppán
,
A.
Fenyvesi
,
L.
Szarka
, and
V.
Wesztergom
, “
Measurement of electric potential difference on trees
,”
Acta Biol. Szeged
46
(
3–4
),
37
38
(
2002
).
21.
C. J.
Love
,
S.
Zhang
, and
A.
Mershin
, “
Source of sustained voltage difference between the xylem of a potted ficus benjamina tree and its soil
,”
PLoS One
3
(
8
),
e2963
(
2008
).
22.
Z.
Hao
,
W.
Li
, and
X.
Hao
, “
Variations of electric potential in the xylem of tree trunks associated with water content rhythms
,”
J. Exp. Bot.
72
(
4
),
1321
1335
(
2021
).
23.
R.
Wimmer
,
W.
Gindl
, and
H. G.
Löppert
, “
Relationship between streaming potential and sap velocity in Salix alba L
,”
Phyton
39
(
2
),
217
224
(
1999
).
24.
Y.
Lei
,
Z.
Qi-You
,
W.
Shi-Yan
,
W.
Gang
,
L.
Cheng-Feng
,
Y.
Lei
,
Z.
Qi-You
,
W.
Shi-Yan
,
W.
Gang
, and
L.
Cheng-Feng
, “
Experimental study on the response of local electric potential difference of boxtree trunk to the water absorption of the root
,”
Prog. Geophys.
25
(
2
),
721
727
(
2010
).
25.
C.
Tötzke
,
J.
Cermak
,
N.
Nadezhdina
, and
H.
Tributsch
, “
Electrochemical in-situ studies of solar mediated oxygen transport and turnover dynamics in a tree trunk of Tilia cordata
,”
iForest
10
(
2
),
355
361
(
2017
).
26.
S. D.
Davis
,
J. S.
Sperry
, and
U. G.
Hacke
, “
The relationship between xylem conduit diameter and cavitation caused by freezing
,”
Am. J. Bot.
86
(
10
),
1367
1372
(
1999
).
27.
J.
Ryu
,
S.
Ahn
,
S. G.
Kim
,
T. J.
Kim
, and
S. J.
Lee
, “
Interactive ion-mediated sap flow regulation in olive and laurel stems: Physicochemical characteristics of water transport via the pit structure
,”
PLoS One
9
(
5
),
e98484
(
2014
).
28.
M. A.
Zwieniecki
,
P. J.
Melcher
, and
N. M.
Holbrook
, “
Hydrogel control of xylem hydraulic resistance in plants
,”
Science
291
(
5506
),
1059
1062
(
2001
).
29.
W. G.
van Doorn
,
T.
Hiemstra
, and
D.
Fanourakis
, “
Hydrogel regulation of xylem water flow: An alternative hypothesis
,”
Plant Physiol.
157
(
4
),
1642
(
2011
).
30.
O. P.
Ilo
,
M. D.
Simatele
,
S. L.
Nkomo
,
N. M.
Mkhize
, and
N. G.
Prabhu
, “
The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review
,”
Sustainable
12
(
21
),
9222
(
2020
).
31.
M.
Qaisar
,
Z.
Ping
,
S. M.
Rehan
,
I.
Ejaz ul
,
A. M.
Rashid
, and
H.
Yousaf
, “
Anatomical studies on water hyacinth (Eichhornia crassipes (Mart.) Solms) under the influence of textile wastewater
,”
J. Zhejiang Univ. Sci. B
6
(
10
),
991
998
(
2005
).
32.
C.
Zhou
,
X.
Zhang
,
Y.
Guo
,
S.
Hu
,
Y.
Tang
,
T.
Li
,
T.
Wang
,
G.
Ma
, and
C.
Yang
, “
Structural and histochemical analyses of the vegetative organs of Eichhornia crassipes
,”
Bot. Lett.
168
(
3
),
458
466
(
2021
).
33.
A.
Johnsson
, “
Oscillations in plant transpiration
,”
Rhythms in Plants: Dynamic Responses in a Dynamic Environment
(
Springer
,
2015
), pp.
157
188
.
34.
S. D.
Tyerman
,
S. A.
McGaughey
,
J.
Qiu
,
A. J.
Yool
, and
C. S.
Byrt
, “
Adaptable and multifunctional ion-conducting aquaporins
,”
Annu. Rev. Plant Biol.
72
,
703
736
(
2021
).
35.
F.
Chaumont
and
S. D.
Tyerman
, “
Aquaporins: Highly regulated channels controlling plant water relations
,”
Plant Physiol.
164
(
4
),
1600
1618
(
2014
).
36.
C. K.
Boyce
,
M. A.
Zwieniecki
,
G. D.
Cody
,
C.
Jacobsen
,
S.
Wirick
,
A. H.
Knoll
, and
N. M.
Holbrook
, “
Evolution of xylem lignification and hydrogel transport regulation
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
50
),
17555
17558
(
2004
).
37.
H.
Cochard
,
S.
Herbette
,
E.
Hernández
,
T.
Hölttä
, and
M.
Mencuccini
, “
The effects of sap ionic composition on xylem vulnerability to cavitation
,”
J. Exp. Bot.
61
(
1
),
275
285
(
2010
).
38.
A.
Gascó
,
E.
Gortan
,
S.
Salleo
, and
A.
Nardini
, “
Changes of pH of solutions during perfusion through stem segments: Further evidence for hydrogel regulation of xylem hydraulic properties?
,”
Biol. Plant.
52
(
3
),
502
506
(
2008
).
39.
S.
Wilkinson
,
J. E.
Corlett
,
L.
Oger
, and
W. J.
Davies
, “
Effects of xylem pH on transpiration from wild-type and flacca tomato leaves: A vital role for abscisic acid in preventing excessive water loss even from well-watered plants
,”
Plant Physiol.
117
(
2
),
703
709
(
1998
).
40.
C.
Grignon
and
H.
Sentenac
, “
pH and ionic conditions in the apoplast
,”
42
(
1
),
103
128
(
2003
).
41.
W.
Van Ieperen
,
U.
Van Meeteren
, and
H.
Van Gelder
, “
Fluid ionic composition influences hydraulic conductance of xylem conduits
,”
J. Exp. Bot.
51
(
345
),
769
776
(
2000
).
42.
S.
Gulzar
,
M. A.
Khan
, and
I. A.
Ungar
, “
Salt tolerance of a coastal salt marsh grass
,”
Commun. Soil Sci. Plant Anal.
34
(
17–18
),
2595
2605
(
2003
).
43.
J.
López-Portillo
,
F. W.
Ewers
,
R.
Méndez-Alonzo
,
C. L. P.
López
,
G.
Angeles
,
A. L. A.
Jiménez
,
A. L.
Lara-Domínguez
, and
M.
del Carmen Torres Barrera
, “
Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species
,”
Am. J. Bot.
101
(
6
),
1013
1022
(
2014
).
44.
R.
Roy
,
S.
Mukherjee
,
R.
Lakkaraju
, and
S.
Chakraborty
, “
Streaming potential in bio-mimetic microvessels mediated by capillary glycocalyx
,”
Microvasc. Res.
132
,
104039
(
2020
).
45.
S.
Mukherjee
,
S.
DasGupta
, and
S.
Chakraborty
, “
Temperature-gradient-induced massive augmentation of solute dispersion in viscoelastic micro-flows
,”
J. Fluid Mech.
897
,
A23
(
2020
).
46.
S. S.
Das
,
S.
Kar
,
T.
Anwar
,
P.
Saha
, and
S.
Chakraborty
, “
Hydroelectric power plant on a paper strip
,”
Lab Chip
18
(
11
),
1560
1568
(
2018
).
47.
A.
Bandopadhyay
and
S.
Chakraborty
, “
Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids
,”
Appl. Phys. Lett.
101
(
4
),
043905
(
2012
).
48.
J.
Dhar
,
U.
Ghosh
, and
S.
Chakraborty
, “
Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion–ion interactions
,”
Electrophoresis
35
(
5
),
662
669
(
2014
).
49.
C.
Bakli
and
S.
Chakraborty
, “
Electrokinetic energy conversion in nanofluidic channels: Addressing the loose ends in nanodevice efficiency
,”
Electrophoresis
36
(
5
),
675
681
(
2015
).
50.
R.
Zimmermann
,
K.
McDonald
,
R.
Oren
, and
J. B.
Way
, “
Xylem dielectric constant, water status, and transpiration of young Jack Pine (Pinus banksiana Lamb.) in the southern boreal zone of Canada
,”
Int. Geosci. Remote Sens. Symp.
2
,
1006
1008
(
1995
).
51.
K. C.
McDonald
,
R.
Zimmermann
, and
J. S.
Kimball
, “
Diurnal and spatial variation of xylem dielectric constant in Norway Spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry
,”
IEEE Trans. Geosci. Remote Sens.
40
(
9
),
2063
2082
(
2002
).
52.
E. G.
Bradfield
, “
Calcium complexes in the xylem sap of apple shoots
,”
Plant Soil
44
,
495
499
(
1976
).
53.
R.
Hernández
,
J.
Riu
, and
F. X.
Rius
, “
Determination of calcium ion in sap using carbon nanotube -based ion-selective electrodes
,”
Analyst
135
(
8
),
1979
1985
(
2010
).
54.
R. K.
Schofield
and
A. W.
Taylor
, “
The hydrolysis of aluminium salt solutions
,”
J. Chem. Soc.
4445
(
1954
).
55.
B. J.
Kirby
and
E. F.
Hasselbrink
, “
Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations
,”
Electrophoresis
25
(
2
),
187
202
(
2004
).
You do not currently have access to this content.