This study delves into the dynamics of generating microdroplets by impacting a droplet onto a micropore on superhydrophobic copper substrates. It identifies the necessary impact velocities for single microdroplet formation for each micropore and characterizes microdroplet size in relation to micropore diameter. The results underscore the significant role of viscosity, especially as the diameter of the micropore decreases. For micropores measuring 400 μm, an increase in viscosity up to 8 cP does not alter the critical impact velocities, while smaller diameters of 50 and 100 μm see a notable change in critical velocities with even minor increases in viscosity. Remarkably, the diameter of the microdroplet remains consistent regardless of changes in the liquid viscosity or impact velocity. This research showcases two practical uses of single microdroplets: printing on paper and fabricating microbeads. The insights gained from these findings pave the way for advancements in printing technology and microfabrication techniques.

1.
H.
Gudapati
,
M.
Dey
, and
I.
Ozbolat
, “
A comprehensive review on droplet-based bioprinting: Past, present and future
,”
Biomaterials
102
,
20
42
(
2016
).
2.
M.
Balzan
,
A.
Abdollahi
,
F. S.
Wells
, and
G. R.
Willmott
, “
Drop impact of non-Newtonian dairy-based solutions
,”
Colloids Surf., A
625
,
126895
(
2021
).
3.
C.
Park
,
J.
Seol
,
A.
Aldalbahi
,
M.
Rahaman
,
A. L.
Yarin
, and
S. S.
Yoon
, “
Drop impact phenomena and spray cooling on hot nanotextured surfaces of various architectures and dynamic wettability
,”
Phys. Fluids
35
(
2
),
027126
(
2023
).
4.
S.
Khandekar
,
G.
Sahu
,
K.
Muralidhar
,
E. Y.
Gatapova
,
O. A.
Kabov
,
R.
Hu
,
X.
Luo
, and
L.
Zhao
, “
Cooling of high-power LEDs by liquid sprays: Challenges and prospects
,”
Appl. Therm. Eng.
184
,
115640
(
2021
).
5.
U. C.
Yi
and
C. J.
Kim
, “
Soft printing of droplets pre-metered by electrowetting
,”
Sens. Actuators, A
114
(
2–3
),
347
354
(
2004
).
6.
X.
Chen
,
A. P.
O'Mahony
, and
T. J.
Barber
, “
Effect of 3D-bioprinted droplet impact dynamics on a pre-printed soft hydrogel matrix
,”
Exp. Fluids
64
(
3
),
60
(
2023
).
7.
M.
Abouelsoud
,
A.
Kherbeche
, and
M. J.
Thoraval
, “
Drop impact on a mesh—Viscosity effect
,”
J Colloid Interface Sci.
648
,
37
45
(
2023
).
8.
C. D.
Modak
,
A.
Kumar
,
A.
Tripathy
, and
P.
Sen
, “
Drop impact printing
,”
Nat. Commun.
11
(
1
),
4327
(
2020
).
9.
S.
Ryu
,
P.
Sen
,
Y.
Nam
, and
C.
Lee
, “
Water penetration through a superhydrophobic mesh during a drop impact
,”
Phys. Rev. Lett.
118
(
1
),
014501
(
2017
).
10.
B. P.
Croom
,
A.
Abbott
,
J. W.
Kemp
,
L.
Rueschhoff
,
L.
Smieska
,
A.
Woll
,
S.
Stoupin
, and
H.
Koerner
, “
Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites
,”
Addit. Manuf.
37
,
101701
(
2021
).
11.
J.
Li
,
F.
Rossignol
, and
J.
Macdonald
, “
Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing
,”
Lab Chip
15
(
12
),
2538
2558
(
2015
).
12.
B. S.
Yilbas
,
G.
Hassan
,
A.
Al-Sharafi
,
H.
Ali
,
N.
Al-Aqeeli
, and
A.
Al-Sarkhi
, “
Water droplet dynamics on a hydrophobic surface in relation to the self-cleaning of environmental dust
,”
Sci. Rep.
8
(
1
),
2984
(
2018
).
13.
G.
Hassan
,
B. S.
Yilbas
,
A.
Al-Sharafi
, and
H.
Al-Qahtani
, “
Self-cleaning of a hydrophobic surface by a rolling water droplet
,”
Sci. Rep.
9
(
1
),
5744
(
2019
).
14.
X.
Wang
,
D. L.
Sun
,
X. D.
Wang
, and
W. M.
Yan
, “
Dynamics of droplets impacting hydrophilic surfaces decorated with a hydrophobic strip
,”
Int. J. Heat Mass Transfer
135
,
235
246
(
2019
).
15.
C.
Antonini
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
,”
Phys. Fluids
24
(
10
),
102104
(
2012
).
16.
M.
Miwa
,
A.
Nakajima
,
A.
Fujishima
,
K.
Hashimoto
, and
T.
Watanabe
, “
Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces
,”
Langmuir
16
(
13
),
5754
5760
(
2000
).
17.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
18.
C.
Lee
,
Y.
Nam
,
H.
Lastakowski
,
J. I.
Hur
,
S.
Shin
,
A. L.
Biance
,
C.
Pirat
,
C. J.
Kim
, and
C.
Ybert
, “
Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact
,”
Soft Matter
11
(
23
),
4592
4599
(
2015
).
19.
T.
Darmanin
and
F.
Guittard
, “
Superhydrophobic and superoleophobic properties in nature
,”
Mater. Today
18
(
5
),
273
285
(
2015
).
20.
S.
Ge-Zhang
,
T.
Cai
,
H.
Yang
,
Y.
Ding
, and
M.
Song
, “
Biology and nature: Bionic superhydrophobic surface and principle
,”
Front. Bioeng. Biotechnol.
10
,
1033514
(
2022
).
21.
Z.
Wang
,
C.
Lopez
,
A.
Hirsa
, and
N.
Koratkar
, “
Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays
,”
Appl. Phys. Lett.
91
(
2
),
023105
(
2007
).
22.
X.
Li
,
X.
Ma
, and
Z.
Lan
, “
Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on the pillars' tops on the contact time
,”
Langmuir
26
(
7
),
4831
4838
(
2010
).
23.
J.
Lomga
,
P.
Varshney
,
D.
Nanda
,
M.
Satapathy
,
S. S.
Mohapatra
, and
A.
Kumar
, “
Fabrication of durable and regenerable superhydrophobic coatings with excellent self-cleaning and anti-fogging properties for aluminium surfaces
,”
J. Alloys Compd.
702
,
161
170
(
2017
).
24.
P.
Varshney
,
D.
Nanda
,
M.
Satapathy
,
S. S.
Mohapatra
, and
A.
Kumar
, “
A facile modification of steel mesh for oil-water separation
,”
New J. Chem.
41
(
15
),
7463
7471
(
2017
).
25.
D.
Nanda
,
A.
Sahoo
,
A.
Kumar
, and
B.
Bhushan
, “
Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces
,”
J. Colloid Interface Sci.
535
,
50
57
(
2019
).
26.
A.
Kumar
and
B.
Gogoi
, “
Development of durable self-cleaning superhydrophobic coatings for aluminium surfaces via chemical etching method
,”
Tribol. Int.
122
,
114
118
(
2018
).
27.
Y.
Liu
,
G.
Whyman
,
E.
Bormashenko
,
C.
Hao
, and
Z.
Wang
, “
Controlling drop bouncing using surfaces with gradient features
,”
Appl. Phys. Lett.
107
(
5
),
051604
(
2015
).
28.
P. B.
Weisensee
,
J.
Tian
,
N.
Miljkovic
, and
W. P.
King
, “
Water droplet impact on elastic superhydrophobic surfaces
,”
Sci. Rep.
6
,
30328
(
2016
).
29.
É.
Lorenceau
and
D.
Quéré
, “
Drops impacting a sieve
,”
J. Colloid Interface Sci.
263
(
1
),
244
249
(
2003
).
30.
C.
Boscariol
,
S.
Chandra
,
D.
Sarker
,
C.
Crua
, and
M.
Marengo
, “
Drop impact onto attached metallic meshes: Liquid penetration and spreading
,”
Exp. Fluids
59
(
12
),
189
(
2018
).
31.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. Fluids
22
(
6
),
062101
(
2010
).
32.
L.
Sun
,
S.
Lin
,
B.
Pang
,
Y.
Wang
,
E.
Li
,
X.
Zu
,
K.
Zhang
,
X.
Xiang
, and
L.
Chen
, “
Water sprays formed by impinging millimeter-sized droplets on superhydrophobic meshes
,”
Phys. Fluids
33
(
9
),
092111
(
2021
).
33.
D.
Soto
,
H. L.
Girard
,
A.
Le Helloco
,
T.
Binder
,
D.
Quéré
, and
K. K.
Varanasi
, “
Droplet fragmentation using a mesh
,”
Phys. Rev. Fluids
3
(
8
),
083602
(
2018
).
34.
C.
Bae
,
S.
Oh
,
J.
Han
,
Y.
Nam
, and
C.
Lee
, “
Water penetration dynamics through a Janus mesh during drop impact
,”
Soft Matter
16
(
26
),
6072
6081
(
2020
).
35.
M. J.
Su
,
Y.
Luo
,
G. W.
Chu
,
Y.
Cai
,
Y.
Le
,
L. L.
Zhang
, and
J. F.
Chen
, “
Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure
,”
Chem. Eng. Sci.
219
,
115593
(
2020
).
36.
G.
Wang
,
J.
Gao
, and
K. H.
Luo
, “
Droplet impacting a superhydrophobic mesh array: Effect of liquid properties
,”
Phys. Rev. Fluids
5
(
12
),
123605
(
2020
).
37.
M. N. E.
Alam
and
H.
Tan
, “
Droplet impact on a microhole through a partially wetting surface
,”
Phys. Fluids
35
(
10
),
102011
(
2023
).
38.
Y.
Nam
and
Y. S.
Ju
, “
A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications
,”
J. Adhes. Sci. Technol.
27
(
20
),
2163
2176
(
2013
).
39.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
(
6891
),
811
811
(
2002
).
40.
K. Y.
Lee
and
D. J.
Mooney
, “
Alginate: Properties and biomedical applications
,”
Prog. Polym. Sci.
37
(
1
),
106
126
(
2012
).
41.
Y.
Cao
,
H.
Cong
,
B.
Yu
, and
Y.
Shen
, “
A review on the synthesis and development of alginate hydrogels for wound therapy
,”
J. Mater. Chem. B
11
(
13
),
2801
2829
(
2023
).

Supplementary Material

You do not currently have access to this content.