In this paper, we numerically studied the effect of stroke deviation on the aerodynamic performance of the three-dimensional flapping wing in forward flight at a low Reynolds number. Six deviation motion patterns with different stroke deviation amplitudes were investigated. The results show that the distinct patterns exert a substantial influence on the aerodynamic forces of the flapping wing, with a more pronounced effect at higher values of deviation amplitude. For most patterns, stroke deviation enhances either lift or thrust performance unilaterally. The maximum lift and thrust of the wing with deviation motion can be 37% and 35% larger than that of the wing without deviation motion. A detailed analysis of typical flow characteristics underscores the pivotal role of deviation motion in aerodynamic force generation. Finally, two artificially created innovative deviation motion patterns are proposed, which exhibit an exceptional capacity to augment thrust by up to 123% or enhance comprehensive aerodynamic performance significantly. These findings establish a theoretical foundation for designing high-performance flapping-wing micro-air vehicles.

1.
C. P.
Ellington
,
C.
vandenBerg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
(
1996
).
2.
M. H.
Dickinson
,
F. O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
(
1999
).
3.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
,
4191
(
2003
).
4.
R. J.
Bomphrey
,
T.
Nakata
,
N.
Phillips
, and
S. M.
Walker
, “
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
,”
Nature
544
,
92
(
2017
).
5.
X.
Cheng
and
M.
Sun
, “
Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force
,”
J. Fluid Mech.
855
,
646
(
2018
).
6.
X.
Cheng
and
M.
Sun
, “
Revisiting the clap-and-fling mechanism in small wasp Encarsia formosa using quantitative measurements of the wing motion
,”
Phys. Fluids
31
,
101903
(
2019
).
7.
S. E.
Farisenkov
,
D.
Kolomenskiy
,
P. N.
Petrov
,
T.
Engels
,
N. A.
Lapina
,
F.-O.
Lehmann
,
R.
Onishi
,
H.
Liu
, and
A. A.
Polilov
, “
Novel flight style and light wings boost flight performance of tiny beetles
,”
Nature
602
,
96
(
2022
).
8.
M.
Sun
, “
Colloquium: Miniature insect flight
,”
Rev. Mod. Phys.
95
,
041001
(
2023
).
9.
H.
Liu
,
S.
Wang
, and
T.
Liu
, “
Vortices and forces in biological flight: Insects, birds, and bats
,”
Annu. Rev. Fluid Mech.
56
,
147
(
2024
).
10.
Y. Z.
Lyu
,
H. J.
Zhu
, and
M.
Sun
, “
Flapping-mode changes and aerodynamic mechanisms in miniature insects
,”
Phys. Rev. E
99
,
012419
(
2019
).
11.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. III. Kinematics
,”
Philos. Trans. R. Soc. London, Ser. B
305
(1122),
41
78
(
1984
).
12.
D. L.
Altshuler
,
W. B.
Dickson
,
J. T.
Vance
,
S. P.
Roberts
, and
M. H.
Dickinson
, “
Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
18213
(
2005
).
13.
J.
Tang
,
D.
Viieru
, and
W.
Shyy
, “
Effects of Reynolds number and flapping kinematics on hovering aerodynamics
,”
AIAA J.
46
,
967
(
2008
).
14.
R. R.
Harbig
,
J.
Sheridan
, and
M. C.
Thompson
, “
The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight
,”
J. Fluid Mech.
751
,
71
(
2014
).
15.
J.-S.
Han
,
J. W.
Chang
, and
J.-H.
Han
, “
The advance ratio effect on the lift augmentations of an insect-like flapping wing in forward flight
,”
J. Fluid Mech.
808
,
485
(
2016
).
16.
N.
Phillips
and
K.
Knowles
, “
Effect of flapping kinematics on the mean lift of an insect-like flapping wing
,”
Proc. Inst. Mech. Eng., Part G
225
,
723
(
2011
).
17.
J. H.
Wu
and
M.
Sun
, “
Unsteady aerodynamic forces of a flapping wing
,”
J. Exp. Biol.
207
,
1137
(
2004
).
18.
F. M.
Bos
,
D.
Lentink
,
B.
Van Oudheusden
, and
H.
Bijl
, “
Influence of wing kinematics on aerodynamic performance in hovering insect flight
,”
J. Fluid Mech.
594
,
341
(
2008
).
19.
X. G.
Meng
and
M.
Sun
, “
Wing and body kinematics of forward flight in drone-flies
,”
Bioinspiration Biomimetics
11
,
056002
(
2016
).
20.
X.
Meng
,
X.
Liu
,
Z.
Chen
,
J.
Wu
, and
G.
Chen
, “
Wing kinematics measurement and aerodynamics of hovering droneflies with wing damage
,”
Bioinspiration Biomimetics
18
,
026013
(
2023
).
21.
X.
Cheng
and
M.
Sun
, “
Wing kinematics and aerodynamic forces in miniature insect Encarsia formosa in forward flight
,”
Phys. Fluids
33
,
021905
(
2021
).
22.
S. P.
Sane
and
M. H.
Dickinson
, “
The control of flight force by a flapping wing: Lift and drag production
,”
J. Exp. Biol.
204
,
2607
(
2001
).
23.
F.-O.
Lehmann
and
S.
Pick
, “
The aerodynamic benefit of wing–wing interaction depends on stroke trajectory in flapping insect wings
,”
J. Exp. Biol.
210
,
1362
(
2007
).
24.
K.-B.
Lua
,
Y.
Lee
,
T.
Lim
, and
K.
Yeo
, “
Aerodynamic effects of elevating motion on hovering rigid hawkmothlike wings
,”
AIAA J.
54
,
2247
(
2016
).
25.
C.
Wang
,
C.
Zhou
, and
P.
Xie
, “
Numerical investigation into the effects of stroke trajectory on the aerodynamic performance of insect hovering flight
,”
J. Mech. Sci. Technol.
30
,
1659
(
2016
).
26.
F.
Hu
,
Y.
Wang
,
D.
Li
, and
X.
Liu
, “
Effects of asymmetric stroke deviation on the aerodynamic performance of flapping wing
,”
Proc. Inst. Mech. Eng., Part G
237
,
480
(
2023
).
27.
H.
Zheng
,
F.
Xie
,
T.
Ji
, and
Y.
Zheng
, “
Kinematic parameter optimization of a flapping ellipsoid wing based on the data-informed self-adaptive quasi-steady model
,”
Phys. Fluids
32
,
041904
(
2020
).
28.
H.-Y.
Kim
,
J.-S.
Han
, and
J.-H.
Han
, “
Aerodynamic effects of deviating motion of flapping wings in hovering flight
,”
Bioinspiration Biomimetics
14
,
026006
(
2019
).
29.
G.
Luo
,
G.
Du
, and
M.
Sun
, “
Effects of stroke deviation on aerodynamic force production of a flapping wing
,”
AIAA J.
56
,
25
(
2018
).
30.
F.
Hu
and
X.
Liu
, “
Effects of stroke deviation on hovering aerodynamic performance of flapping wings
,”
Phys. Fluids
31
,
111901
(
2019
).
31.
K.
Viswanath
and
D. K.
Tafti
, “
Effect of stroke deviation on forward flapping flight
,”
AIAA J.
51
,
145
(
2013
).
32.
J.
Esfahani
,
E.
Barati
, and
H. R.
Karbasian
, “
Fluid structures of flapping airfoil with elliptical motion trajectory
,”
Comput. Fluids
108
,
142
(
2015
).
33.
S.
Yang
,
C.
Liu
, and
J.
Wu
, “
Effect of motion trajectory on the aerodynamic performance of a flapping airfoil
,”
J. Fluids Struct.
75
,
213
(
2017
).
34.
T.
Wu
,
B.
Song
,
W.
Song
,
W.
Yang
,
D.
Xue
, and
Z.
Han
, “
Lift performance enhancement for flapping airfoils by considering surging motion
,”
Chin. J. Aeronaut.
35
,
194
(
2022
).
35.
J.
Wu
,
Y.
Chen
,
N.
Zhao
, and
T.
Wang
, “
Influence of stroke deviation on the power extraction performance of a fully-active flapping foil
,”
Renewable Energy
94
,
440
(
2016
).
36.
B.
Wang
,
B.
Zhu
, and
W.
Zhang
, “
New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices
,”
Energy
189
,
116072
(
2019
).
37.
X.
Meng
,
Z.
Chen
,
Y.
Zhang
, and
G.
Chen
, “
Aerodynamic performance and flow mechanism of multi-flapping wings with different spatial arrangements
,”
Phys. Fluids
34
,
021907
(
2022
).
38.
X.
Meng
,
Z.
Chen
,
D.
Wang
,
S.
Jiang
, and
G.
Chen
, “
Aerodynamic interference of three flapping wings in tandem configuration
,”
Phys. Fluids
35
,
031911
(
2023
).
39.
X.
Meng
, “
Ceiling effects on the aerodynamics of a flapping wing at hovering condition
,”
Phys. Fluids
31
,
051905
(
2019
).
40.
X.
Meng
,
A.
Ghaffar
,
Y.
Zhang
, and
C.
Deng
, “
Very low Reynolds number causes a monotonic force enhancement trend for a three-dimensional hovering wing in ground effect
,”
Bioinspiration Biomimetics
16
,
055006
(
2021
).
41.
A.
Hilgenstock
, “
A fast method for the elliptic generation of three-dimensional grids with full boundary control
,” in
Proceedings of the Second International Conference on Numerical Grid Generation Computational Fluid Mechanics
(
Pineridge Press Ltd
.,
1988
), Vol.
88
, p.
137
.
42.
A.-K.
Gao
,
S.-F.
Zou
,
Y.
Shi
, and
J.
Wu
, “
Passing-over leading-edge vortex: The thrust booster in heaving airfoil
,”
AIP Adv.
9
,
035314
(
2019
).
43.
A.-K.
Gao
,
C. D.
Cantwell
,
O.
Son
, and
S. J.
Sherwin
, “
Three-dimensional transition and force characteristics of low-Reynolds-number flows past a plunging airfoil
,”
J. Fluid Mech.
973
,
A43
(
2023
).
44.
L.
Chen
,
L.
Wang
,
C.
Zhou
,
J.
Wu
, and
B.
Cheng
, “
Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings
,”
J. Fluid Mech.
931
,
A13
(
2022
).
You do not currently have access to this content.