The article proposes new, easy-to-manufacture multivariate tubular Tesla valves that can be used in the educational process at universities and colleges. Detailed instructions for making Tesla valves from available materials using simple tools are provided. The advantages of the proposed Tesla valves over the conventional ones, described in the literature, such as manufacture ease, availability of materials and accessories, mechanical flexibility, and the ability to quickly change the number of links and change the link connection pattern, are indicated. A simple method is proposed for conducting hydrodynamic studies of liquid flow from a vessel through Tesla valves, based on measuring the water level dynamics in the vessel and, in particular, measuring the vessel's complete emptying time. Some simple experiments to demonstrate the diodicity of the valves are carried out. The repeatability and measurement errors are assessed. Parallel and series connections of valve sections are studied. The prospects for Tesla valves' use in various fields of science and technology are considered. The advantages of the proposed valves for laboratory teaching experiments in the classroom are indicated.

1.
M.
Cheney
and
R.
Uth
,
Tesla, Master of Lightning
(
Barnes & Noble Publishing
,
NY
,
1999
).
2.
N.
Tesla
, “
Valvular conduit
,” U.S. patent 1329559 (
1920
).
3.
P.
Hu
,
P.
Wang
,
L.
Liu
,
X.
Ruan
,
L.
Zhang
, and
Z.
Xu
, “
Numerical investigation of Tesla valves with a variable angle
,”
Phys. Fluids
34
,
033603
(
2022
).
4.
P.
Wang
,
P.
Hu
,
L.
Liu
,
Z.
Xu
,
W.
Wang
, and
B.
Scheid
, “
On the diodicity enhancement of multistage Tesla valves
,”
Phys. Fluids
35
,
052010
(
2023
).
5.
S. M.
Thompson
,
H. B.
Ma
, and
C.
Wilson
, “
Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves
,”
Exp. Therm. Fluid Sci.
35
,
1265
1273
(
2011
).
6.
A. Y.
Nobakht
,
M.
Shahsavan
, and
A.
Paykani
, “
Numerical study of diodicity mechanism in different Tesla-type microvalves
,”
J. Appl. Res. Technnol.
11
,
876
885
(
2013
).
7.
H.
Hu
,
I.
Son
,
H.
Kikumoto
,
B.
Zhang
, and
K.
Hayashi
, “
Improving Tesla valve shape within fluid diode plates for building ventilation
,”
Build. Environ.
252
,
111259
(
2024
).
8.
C.-T.
Wang
,
Y.-M.
Chen
,
P.-A.
Hong
, and
Y.-T.
Wang
, “
Tesla valves in micromixers
,”
Int. J. Chem. Reactor Eng.
12
,
397
403
(
2014
).
9.
S. F.
de Vries
,
D.
Florea
,
F. G. A.
Homburg
, and
A. J. H.
Frijns
, “
Design and operation of a Tesla-type valve for pulsating heat pipes
,”
Int. J. Heat Mass Transfer
105
,
1
11
(
2017
).
10.
J.-Y.
Qian
,
M.-R.
Chen
,
Z.-X.
Gao
, and
Z.-J.
Jin
, “
Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression
,”
Energy
179
,
647
654
(
2019
).
11.
M.
Abdelwahed
,
N.
Chorfi
, and
R.
Malek
, “
Reconstruction of Tesla micro-valve using topological sensitivity analysis
,”
Adv. Nonlinear Anal.
9
,
567
590
(
2020
).
12.
Q. M.
Nguyen
,
J.
Abouezzi
, and
L.
Ristroph
, “
Early turbulence and pulsatile flows enhance diodicity of Tesla's macrofluidic valve
,”
Nat. Commun.
12
,
2884
(
2021
).
13.
S.
Bohm
,
H. B.
Phi
,
A.
Moriyama
,
E.
Runge
,
S.
Strehle
,
J.
König
,
C.
Cierpka
, and
L.
Dittrich
, “
Highly efficient passive Tesla valves for microfluidic applications
,”
Microsyst. Nanoeng.
8
,
97
(
2022
).
14.
W. L. N.
Buglie
,
K. F.
Tamrin
,
N. A.
Sheikh
,
M. F. M.
Yasin
, and
S.
Mohamaddan
, “
Enhanced fluid mixing using a reversed multistage Tesla micromixer
,”
Chem. Eng. Technol.
45
,
1255
1263
(
2022
).
15.
X.
Li
,
K.
Worrall
,
A.
Vedanthu
,
A.
Scott-George
, and
P.
Harkness
, “
The pulse-elevator: A pump for granular materials
,”
Acta Astronaut.
200
,
33
41
(
2022
).
16.
J.
Wang
,
B.
Cui
,
H.
Liu
,
X.
Chen
,
Y.
Li
,
R.
Wang
,
T.
Lang
,
H.
Yang
,
l.
Li
,
H.
Pan
,
J.
Quan
,
Y.
Chen
,
J.
Xu
, and
Y.
Liu
, “
Tesla valve-based flexible microhybrid chip with unidirectional flow properties
,”
ASC Omega
7
,
31744
31755
(
2022
).
17.
D.
Andriukaitis
,
R.
Vargalis
,
L.
Šerpytis
,
T.
Drevinskas
,
O.
Kornyšova
,
M.
Stankevičius
,
K.
Bimbiraitė-Survilienė
,
V.
Kaškonienė
,
A. S.
Maruškas
, and
L.
Jonušauskas
, “
Fabrication of microfluidic Tesla valve employing femtosecond bursts
,”
Micromachines
13
,
1180
(
2022
).
18.
A.
Purwidyantri
and
B. A.
Prabowo
, “
Tesla valve microfluidics: The rise of forgotten technology
,”
Chemosensors
11
,
256
(
2023
).
19.
Y.
Wang
,
Y.
He
,
X.
Xie
,
Z.
Huang
,
H.
Xu
,
Q.
Hu
, and
C.
Ma
, “
Design and simulation of a new near zero-wear non-contact self-impact seal based on the Tesla valve structure
,”
Lubricants
11
,
102
118
(
2023
).
20.
G.
Zeng
,
M.
Xu
,
J.
Mou
,
C.
Hua
, and
C.
Fan
, “
Application of Tesla valve's obstruction characteristics to reverse fluid in fish migration
,”
Water
15
,
40
(
2023
).
21.
D.
Stith
, “
The Tesla valve – A fluidic diode
,”
Phys. Teach.
57
,
201
(
2019
).
22.
Q. M.
Nguyen
,
D.
Huang
,
E.
Zauderer
,
G.
Romanelli
,
C. L.
Meyer
, and
L.
Ristroph
, “
Tesla's fluidic diode and the electronic-hydraulic analogy
,”
Am. J. Phys.
89
,
393
402
(
2021
).
23.
S. C.
Leigh
,
A. P.
Summers
,
S. L.
Hoffmann
, and
D. P.
German
, “
Shark spiral intestines may operate as Tesla valves
,”
Proc. R. Soc. B
288
,
20211359
(
2021
).
24.
See https://www.gyroscope.com/d.asp?product=VC1 for “
PLASTIC Valvular Conduit – Tesla valve.
25.
E.
Torricellii
,
Opera Geometrica
(
Florence
,
1644
).
26.
R. D.
Driver
, “
Torricelli's law—An ideal example of elementary ODE
,”
Am. Math. Mon.
105
,
453
455
(
1998
).
27.
K.
Atkin
, “
Investigating the Torricelli law using a pressure sensor with the Arduino and MakerPlot
,”
Phys. Educ.
53
,
065001
(
2018
).
28.
H.
Williams
, “
Vessel drainage under the influence of gravity
,”
Phys. Teach.
59
,
629
631
(
2021
).
29.
C.
Clanet
, “
Clepsydrae, from Galilei to Torricelli
,”
Phys. Fluids
12
,
2743
2751
(
2000
).
30.
O.
Darrigol
,
World of Flow. A History of Hydrodynamics from the Bernoullis to Prandtl
(
Oxford, University Press
,
2005
).
31.
J. S.
Calero
,
The Genesis of Fluid Mechanics 1640–1780
(
Springer
,
Dordrecht
,
2008
).
32.
Y. A.
Çengel
and
J. M.
Cimbala
,
Fluid Mechanics
(
McGraw-Hill Education
,
NY
,
2018
).
33.
E.
Villermaux
and
Y.
Pomeau
, “
Super free fall
,”
J. Fluid Mech.
642
,
147
157
(
2010
).
34.
C.
Treviňo
,
S.
Peralta
,
A.
Torres
, and
A.
Medina
, “
Super free fall of an inviscid liquid through interconnected vertical pipes
,”
Europhys. Lett.
112
,
14002
14005
(
2015
).
35.
A. E.
Dubinov
and
I. D.
Dubinova
, “
Added point-like weight increases the levitation time of the falling soft coil spring
,”
Mech. Res. Commun.
113
,
103670
(
2021
).
36.
A. A.
Volodko
and
A. E.
Dubinov
, “
High-speed visualization of soap films bursting dynamics
,”
Am. J. Phys.
89
,
253
260
(
2021
).
37.
J.
Kuhn
and
P.
Vogt
,
Smartphones as Mobile Minilabs in Physics: Edited Volume Featuring More Than 70 Examples from 10 Years the Physics Teacher-Column iPhysicsLabs
(
Springer Nature
,
Cham, Switzerland
,
2022
).
38.
See https://tracker.physlets.org/ for “
Tracker Video Analysis and Modeling Tool for Physics Education
.”
39.
R. F.
Uy
,
C.
Yuan
,
Z.
Chai
, and
J.
Khor
, “
Wilberforce pendulum: Modelling linearly damped coupled oscillations of a spring-mass system
,”
Eur. J. Phys.
43
,
015011
(
2022
).
40.
C. M.
Orban
,
S.
Zimmerman
,
J. T.
Kulp
,
J.
Boughton
,
Z.
Perrico
,
B.
Rapp
, and
R.
Telling-Smith
, “
Methods to simplify object tracking in video data
,”
Phys. Teach.
61
,
576
579
(
2023
).
41.
A. E.
Dubinov
,
J. P.
Kozhayeva
,
V. A.
Lubimtseva
, and
V. D.
Selemir
, “
Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review
,”
Adv. Colloid Interface Sci.
271
,
101986
(
2019
).
42.
A. E.
Dubinov
,
J. P.
Kozhayeva
,
V. V.
Golovanov
, and
V. D.
Selemir
, “
Coalescence of liquid droplets under effect of pulsed-periodic spark discharges
,”
IEEE Trans. Plasma Sci.
47
,
76
80
(
2019
).
43.
V. A.
Dekhtyar
and
A. E.
Dubinov
, “
Visualization of liquids flows in microfluidics and plasma channels in nanosecond spark microdischarges by means of digital microscopy
,”
Sci. Visualization
15
,
1
16
(
2023
).
44.
R. S.
Pearson
, “
Manganese color reactions
,”
J. Chem. Educ.
65
,
451
452
(
1988
).
45.
D.
Braess
, “
Über ein paradoxon aus der verkehrsplanung
,”
Unternehmensforschung
12
,
258
268
(
1968
) (in German).
46.
D.
Braess
,
A.
Nagurney
, and
T.
Wakolbinger
, “
On a paradox of traffic planning
,”
Transp. Sci.
39
,
446
450
(
2005
).
47.
D. J.
Case
,
Y.
Liu
,
I. Z.
Kiss
,
J.-R.
Angilella
, and
A. E.
Motter
, “
Braess's paradox and programmable behaviour in microfluidic networks
,”
Nature
574
,
647
652
(
2019
).
48.
X.
Yang
,
F.
Song
,
Y.
Wu
,
J.
Zhou
,
Z.
Yang
, and
Y.
Kou
, “
Experimental study on tesla valve and bypass manifold to suppress feedback of rotating detonation engine fuel by kerosene
,”
Acta Astronaut.
211
,
755
763
(
2023
).
49.
X.
Yang
,
F.
Song
,
Y.
Wu
,
J.
Zhou
,
X.
Chen
,
J.
Kang
, and
Y.
Ma
, “
Experimental study on suppressing pressure feedback and combustion product backflow of the rotating detonation engine
,”
Aerosp. Sci. Technol.
141
,
108523
(
2023
).
50.
X.
Yang
,
F.
Song
,
Y.
Wu
, and
J.
Zhou
, “
Experimental study of mode control in rotating detonation combustor using Tesla valve mode control configuration fueled by kerosene
,”
Exp. Therm. Fluid Sci.
151
,
111075
(
2024
).
51.
J.
Yu
,
S.
Hong
,
S.
Koudai
,
C.
Dang
, and
S.
Wang
, “
An experimental investigation on the heat transfer characteristics of pulsating heat pipe with adaptive structured channels
,”
Energies
16
,
6988
(
2023
).
52.
Y.
Wang
,
Z.
Huang
,
Y.
He
,
J.
Liu
,
Y.
Wang
,
W.
Liu
, and
X.
Jin
, “
Initially search on leakage characteristics and sealing mechanism of a new type self-impact seal
,”
Tribology
43
,
1330
1340
(
2023
) (in Chinese).
53.
M.
Shaikh
,
X.
Liu
,
K.
Amini
,
T.
Steinle
, and
J.
Biegert
, “
High density molecular jets of complex neutral organic molecules with Tesla valves
,”
Rev. Sci. Instr.
92
,
104103
(
2021
).
54.
A.
Rogers
,
Z.
He
, and
Y.
Wang
, “
Exploring the potential of tesla valve for filtering and sorting microscale active swimmers: A computational study
,”
Appl. Eng. Sci.
16
,
100159
(
2023
).
55.
A. A.
Kubar
,
J.
Cheng
,
S.
Kumar
,
S.
Liu
,
S.
Chen
, and
J.
Tian
, “
Strengthening mass transfer with the Tesla-valve baffles to increase the biomass yield of Arthrospira platensis in a column photobioreactor
,”
Bioresour. Technol.
320
,
124337
(
2021
).
56.
S.
Raghu
, “
Fluidic oscillators for flow control
,”
Exp. Fluids
54
,
1455
(
2013
).
57.
H.-J.
Schmidt
,
R.
Woszidlo
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Separation control with fluidic oscillators in water
,”
Exp. Fluids
58
,
106
(
2017
).
58.
M. N.
Tomac
and
E.
Sundström
, “
Adjustable frequency fluidic oscillator with supermode frequency
,”
AIAA J.
57
,
3349
3359
(
2019
).
59.
O. P.
Ayeni
and
B.
Cleton
, “
Aspect ratio and combined installation in fluidic oscillator-crossflow interactions
,”
Phys. Fluids
34
,
115124
(
2022
).
60.
P.
Zhao
,
H.
Wang
,
Y.
Wang
,
W.
Zhao
,
M.
Han
, and
H.
Zhang
, “
A time sequential microfluid sensor with Tesla valve channels
,”
Nano Res.
16
,
11667
11673
(
2023
).
61.
S.
Wang
,
J.
Hu
,
H.
You
,
D.
Li
,
Z.
Yu
, and
N.
Gan
, “
Tesla valve-assisted biosensor for dual-mode and dual-target simultaneous determination of foodborne pathogens based on phage/DNAzyme co-modified zeolitic imidazolate framework-encoded probes
,”
Anal. Chim. Acta
1275
,
341591
(
2023
).
62.
K. W.
Oh
,
K.
Lee
,
B.
Ahn
, and
E. P.
Furlani
, “
Design of pressure-driven microfluidic networks using electric circuit analogy
,”
Lab Chip
12
,
515
545
(
2012
).
63.
A.
Salim
and
S.
Lim
, “
Review of recent metamaterial microfluidic sensors
,”
Sensors
18
,
232
(
2018
).
64.
A.
Adamatzky
, “
A brief history of liquid computers
,”
Philos. Trans. R. Soc. B
374
,
20180372
(
2019
).
65.
M.
Chen
,
X.
Shen
, and
L.
Xu
, “
Hydrodynamic metamaterials: Principles, experiments, and applications
,”
Droplet
2
,
e79
(
2023
).
66.
J.
Hang
,
Y.
Li
,
M.
Sandberg
, and
L.
Claesson
, “
Wind conditions and ventilation in high-rise long street models
,”
Build. Environ.
45
,
1353
1365
(
2010
).
67.
O. S.
Asfour
, “
Prediction of wind environment in different grouping patterns of housing blocks
,”
Energy Build.
42
,
2061
2069
(
2010
).
68.
T.
Stathopoulos
,
H.
Alrawashdeh
,
A.
Al-Quraan
,
B.
Blocken
,
A.
Dilimulati
,
M.
Paraschivoiu
, and
P.
Pilay
, “
Urban wind energy: Some views on potential and challenges
,”
J. Wind Eng. Ind. Aerodyn.
179
,
146
157
(
2018
).
69.
F.
Toja-Silva
,
T.
Kono
,
C.
Peralta
,
O.
Lopez-Garcia
, and
J.
Chen
, “
A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation
,”
J. Wind Eng. Ind. Aerodyn.
180
,
66
87
(
2018
).
70.
F. H.
von Glehn
and
S. J.
Bluhm
, “
Practical aspects of the ventilation of high-speed developing tunnels in hot working environments
,”
J. South Afr. Inst. Min. Metall.
15
,
471
475
(
2000
).
71.
E. I.
Acuña
and
I. S.
Lowndes
, “
A review of primary mine ventilation system optimization
,”
Interfaces
44
,
163
175
(
2014
).
72.
R. K.
Bhagat
,
S. B.
Dalziel
,
M. S.
Davies Wykes
, and
P. F.
Linden
, “
Building ventilation: The consequences for personal exposure
,”
Ann. Rev. Fluid Mech.
56
,
405
434
(
2024
).
73.
M. J.
Canny
, “
Flow and transport in plants
,”
Ann. Rev. Fluid Mech.
9
,
275
296
(
1977
).
74.
H.
Chen
,
P.
Zhang
,
L.
Zhang
,
H.
Liu
,
Y.
Jiang
,
D.
Zhang
,
Z.
Han
, and
L.
Jiang
, “
Continuous directional water transport on the peristome surface of Nepenthes alata
,”
Nature
532
,
85
89
(
2016
).
75.
U.
Zimmermann
,
H.
Schneider
,
L. H.
Wegner
, and
A.
Haase
, “
Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state?
New Phytol.
162
,
575
615
(
2004
).
76.
V.
Rolland
,
D. M.
Bergstrom
,
T.
Lenné
,
G.
Bryant
,
H.
Chen
,
J.
Wolfe
,
N. M.
Holbrook
,
D. E.
Stanton
, and
M. C.
Ball
, “
Easy come, easy go: Capillary forces enable rapid refilling of embolized primary xylem vessels
,”
Plant Physiol.
168
,
1636
1647
(
2015
).
77.
C.
Li
,
H.
Dai
,
C.
Gao
,
T.
Wang
,
Z.
Dong
, and
L.
Jiang
, “
Bioinspired inner microstructured tube controlled capillary rise
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
12704
12709
(
2019
).
78.
M.
Lee
,
J.
Oh
,
H.
Lim
, and
J.
Lee
, “
Enhanced liquid transport on a highly scalable, cost-effective, and flexible 3D topological liquid capillary diode
,”
Adv. Funct. Mater.
31
,
2011288
(
2021
).
You do not currently have access to this content.