The alternative interpretation of Stokes' hypothesis provided by Buresti [Acta Mech. 226, 3555–3559 (2015)] is investigated by an analysis of a near-continuum, hypersonic flow of oxygen over a double cone obtained from a large-scale direct simulation Monte Carlo computation. We show that for molecular oxygen, which has comparable bulk and shear viscosity coefficients, the difference between mechanical and thermodynamic pressure is negligible throughout most of the flow. This result justifies neglecting viscous stresses in the normal stress tensor associated with fluid particle dilatation, as is often done in continuum descriptions of compressible flows. The violation of the revisited Stokes' hypothesis was only observed in highly nonequilibrium regions of the flow (shocks and strong expansions) and wherever non-continuum effects become significant. For nonequilibrium flows of gases with large bulk viscosity relative to their shear viscosity, the revisited Stokes' assumption may still breakdown and requires further investigation.

1.
G. V.
Candler
, “
Rate effects in hypersonic flows
,”
Annu. Rev. Fluid Mech.
51
,
379
402
(
2019
).
2.
J. D.
Anderson
,
Hypersonic and High-Temperature Gas Dynamics
, 2nd ed., AIAA Education Series (
American Institute of Aeronautics and Astronautics, Inc.
,
Reston
,
VA
,
2006
).
3.
M. S.
Grover
,
A. M.
Verhoff
,
P.
Valentini
, and
N. J.
Bisek
, “
First principles simulation of reacting hypersonic flow over a blunt wedge
,”
Phys. Fluids
35
,
086106
(
2023
).
4.
E. D.
Eastman
, “
Theory of the Soret effect
,”
J. Am. Chem. Soc.
50
,
283
291
(
1928
).
5.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland Publishing Company
,
Amsterdam
,
1993
).
6.
M. J.
Wright
,
T.
White
, and
N.
Mangini
, “
Data Parallel Line Relaxation (DPLR) code user manual: Acadia—Version 4.01.1
,”
Report No. NASA/TM–2009-215388
(
NASA, Ames Research Center
,
Moffett Field
,
CA
,
2009
).
7.
A. L.
Zibitsker
,
J. A.
McQuaid
,
E. C.
Stern
,
G. E.
Palmer
,
B. J.
Libben
,
C.
Brehm
, and
A.
Martin
, “
Finite-rate and equilibrium study of graphite ablation under arc-jet conditions
,”
Comput. Fluids
267
,
106069
(
2023
).
8.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
, “
Global ab initio ground-state potential energy surface of N4
,”
J. Chem. Phys.
139
,
044309
(
2013
).
9.
J. D.
Bender
,
P.
Valentini
,
I.
Nompelis
,
Y.
Paukku
,
Z.
Varga
,
D. G.
Truhlar
,
T. E.
Schwartzentruber
, and
G. V.
Candler
, “
An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2+N2 dissociation reactions
,”
J. Chem. Phys.
143
,
054304
(
2015
).
10.
G. A.
Buresti
, “
A note on Stokes' hypothesis
,”
Acta Mech.
226
,
3555
3559
(
2015
).
11.
B.
Sharma
and
R.
Kumar
, “
Estimation of bulk viscosity of dilute gases using a nonequilibrium molecular dynamics approach
,”
Phys. Rev. E
100
,
013309
(
2019
).
12.
M. S.
Cramer
, “
Numerical estimates for the bulk viscosity of ideal gases
,”
Phys. Fluids
24
,
066102
(
2012
).
13.
P.
Valentini
,
M. S.
Grover
,
A. M.
Verhoff
, and
N. J.
Bisek
, “
Near-continuum, hypersonic oxygen flow over a double cone simulated by direct simulation Monte Carlo informed from quantum chemistry
,”
J. Fluid Mech.
966
,
A32
(
2023
).
14.
E.
Kustova
,
M.
Mekhonoshina
,
A.
Bechina
,
S.
Lagutin
, and
Y.
Voroshilova
, “
Continuum models for bulk viscosity and relaxation in polyatomic gases
,”
Fluids
8
,
48
(
2023
).
15.
D.
Bruno
and
V.
Giovangigli
, “
Relaxation of internal temperature and volume viscosity
,”
Phys. Fluids
23
,
093104
(
2011
).
16.
G.
Emanuel
, “
Effect of bulk viscosity on a hypersonic boundary layer
,”
Phys. Fluids A
4
,
491
495
(
1992
).
17.
J.
Shang
,
T.
Wu
,
H.
Wang
,
C.
Yang
,
C.
Ye
,
R.
Hu
,
J.
Tao
, and
X.
He
, “
Measurement of temperature-dependent bulk viscosities of nitrogen, oxygen and air from spontaneous Rayleigh-Brillouin scattering
,”
IEEE Access
7
,
136439
136451
(
2019
).
18.
G. A.
Bird
,
Molecular Gas Dynamics and Simulation of Gas Flows
(
Cambridge University Press
,
Cambridge
,
England
,
1994
).
19.
O.
Tumuklu
,
D. A.
Levin
, and
V.
Theofilis
, “
Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach
,”
Phys. Fluids
30
,
046103
(
2018
).
20.
P.
Valentini
,
A. M.
Verhoff
,
M. S.
Grover
, and
N. J.
Bisek
, “
First-principles predictions for shear viscosity of air components at high temperature
,”
Phys. Chem. Chem. Phys.
25
,
9131
9139
(
2023
).
21.
M. S.
Grover
,
E.
Torres
, and
T. E.
Schwartzentruber
, “
Direct molecular simulation of internal energy relaxation and dissociation in oxygen
,”
Phys. Fluids
31
,
076107
(
2019
).
22.
P.
Valentini
,
M. S.
Grover
,
N. J.
Bisek
, and
A. M.
Verhoff
, “
Ab initio calculation of thermal conductivity: Application to molecular nitrogen
,”
Phys. Rev. Fluids
7
,
L071401
(
2022
).
23.
P.
Valentini
,
M. S.
Grover
, and
N. J.
Bisek
, “
Molecular diffusion of mass and energy predicted by ab initio potential energy surfaces for air components at high temperatures
,”
Phys. Rev. Fluids
9
,
013401
(
2024
).
You do not currently have access to this content.