River protection structures, especially spur dikes, play a vital role in the hydrodynamic and morphological changes in a river system. Since the earliest days, numerous studies have been carried out to understand the flow characteristics around spur dikes by varying the spacing between them, the length, the shape, the permeability, and the submergence. Despite several studies, knowledge of flow characteristics around spur dikes is still poorly understood, resulting in damages and failures worldwide. Furthermore, such failures get aggravated under extreme conditions like floods, land-slide-induced surges and tidal bores. Therefore, this state-of-the-art review paper provides a comprehensive account of relevant studies on the flow interaction and its characteristics in the vicinity of spur dikes during normal and extreme scenarios. Possible failure mechanisms with a detailed examination of scour in the proximity of spur dikes are deliberated. Suitable design features and international standards of various types of spur dikes are appraised through this comprehensive review. Furthermore, we also identified a number of research gaps that need immediate attention. This review paper, as a whole, provides concrete knowledge of the flow interaction with spur dikes and design components of spur dikes, thereby helping researchers to understand the advancement in the research area and providing hydraulic engineers with guidance for designing the spur field at a specific site based on the requirements.

1.
Abbasi
,
A. A.
and
Leknejad
,
M.
, “
Experimental investigation of the effect of geometry parameters of straight and T-shape gabion groynes on local scouring
,”
Irrig. Water Eng.
2
(
4
),
95
107
(
2012
).
2.
Ahmad
,
M.
, “
Spacing and protection of spurs for bank protection
,”
Civil Eng. Publ. Rev.
46
,
3
7
(
1951
).
3.
Ahmed
,
A.
and
Fawzi
,
A.
, “
Meandering and bank erosion of the River Nile and its environmental impact on the area between Sohag and El-Minia, Egypt
,”
Arab. J. Geosci.
4
,
1
11
(
2011
).
4.
Alasadi
,
L. A. R.
,
Khlif
,
T. H.
, and
Hassan
,
F. A.
, “
Experimental investigation for the local scour around V-shaped spur-dikes
,” in
Przegląd Naukowy Inżynieria i Kształtowanie Środowiska
,
2023
, Vol.
32
.
5.
Alauddin
,
M.
and
Tsujimoto
,
T.
, “
Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments
,”
Int. J. Sediment Res.
27
(
2
),
158
167
(
2012
).
6.
Alvarez
,
J. A. M.
, “
State-of-the-art report: Mexico. Design of groins and spur dikes
,” in
Proceedings National Conference on Hydraulic Engineering
,
New Orleans
(American Society of Civil Engineers,
1989
), pp.
296
301
.
7.
Angillieri
,
M. Y. E.
,
Villarroel
,
C. D.
,
Ocaña
,
R. E.
, and
Forte
,
A. P.
, “
Examples of landslide dams and their stability in the Blanco River basin. Central Andes, San Juan Argentina
,”
J. South Am. Earth Sci.
118
,
103946
(
2022
).
8.
Asawa
,
G. L.
,
Irrigation Engineering
(
Wiley Eastern Limited Publisher
,
New Delhi
,
1993
), p.
568
.
9.
Atarodi
,
A.
,
Karami
,
H.
,
Ardeshir
,
A.
,
Hosseini
,
K.
, and
Lampert
,
D.
, “
Experimental investigation of scour reduction around spur dikes by collar using Taguchi method
,”
Iran. J. Sci. Technol. Trans. Civ. Eng.
45
,
971
983
(
2021
).
10.
Athar
,
M.
,
Mansoor
,
T.
, and
Nishank
,
A.
, “
Effects of spur dyke's orientation on bed variation in channel bend
,”
Hydro Sci. Mar. Eng.
3
(
2
),
1
9
(
2021
).
11.
Aya
,
S.
,
Fujita
,
I.
, and
Miyawaki
,
N.
, “
2-D models for flows in the river with submerged groins
,” in
Managing Water: Coping with Scarcity and Abundance
(
ASCE
,
1997
), pp.
829
834
.
12.
Azinfar
,
H.
and
Kells
,
J. A.
, “
Backwater prediction due to the blockage caused by a single, submerged spur dike in an open channel
,”
J. Hydraul. Eng.
134
(
8
),
1153
1157
(
2008
).
13.
Azinfar
,
H.
and
Kells
,
J. A.
, “
Flow resistance due to a single spur dike in an open channel
,”
J. Hydraul. Res.
47
(
6
),
755
763
(
2009
).
14.
Azinfar
,
H.
, “
Flow resistance and associated backwater effect due to spur dikes in open channels
,”
Doctoral dissertation
(University of Saskatchewan,
2010
).
15.
Baba
,
Y.
,
Camenen
,
B.
,
Peltier
,
Y.
,
Thollet
,
F.
, and
Zhang
,
H.
, “
Flows and bedload dynamics around spur dyke in a compound channel
,” in
11th International Symposium on River Sedimentation
,
2010
.
16.
Bahrami-Yarahmadi
,
M.
,
Pagliara
,
S.
,
Yabarehpour
,
E.
, and
Najafi
,
N.
, “
Study of scour and flow patterns around triangular-shaped spur dikes
,”
KSCE J. Civ. Eng.
24
(
11
),
3279
3288
(
2020
).
17.
Bajelvand
,
S.
,
Gohari
,
S.
, and
Haydari
,
M.
, “
Experimental study effect of length on local scouring around hockey and L-shaped spur dikes
,”
Irrig. Water Eng.
13
(
2
),
126
142
(
2022
).
18.
Barkdoll
,
B. D.
,
Ettema
,
R.
, and
Melville
,
B. W.
,
Countermeasures to Protect Bridge Abutments from Scour
(
Transportation Research Board
,
2007
), Vol.
587
.
19.
Bartsch-Winkler
,
S.
and
Lynch
,
D. K.
,
Catalog of Worldwide Tidal Bore Occurrences and Characteristics
(
US Government Printing Office
,
1988
), Vol.
1022
.
20.
Basser
,
H.
,
Karami
,
H.
,
Shamshirband
,
S.
,
Akib
,
S.
,
Amirmojahedi
,
M.
,
Ahmad
,
R.
,
Jahangirzadeh
,
A.
, and
Javidnia
,
H.
, “
Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike
,”
Appl. Soft Comput.
30
,
642
649
(
2015
).
21.
BAW
, see https://www.baw.de/content/fles/forschung_entwicklung/documents/B3955.02.04.70141.pdf for “
Schifserzeugte Langperiodische Belastung Zur Bemessung der Deckschichten Von Strombauwerken an Seeschiffahrtsstraßen
(
2018
).”
22.
Belz
,
J. U.
,
Busch
,
N.
,
Engel
,
H.
, and
Gasber
,
G.
, “
Comparison of river training measures in the Rhine—Catchment and their effects on flood behaviour
,” in
Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering
(
Thomas Telford Ltd
.,
2001
), Vol.
148
, pp.
123
132
.
23.
Bellanthudawa
,
B. K. A.
,
Nawalage
,
N. M. S. K.
,
Halwatura
,
D.
,
Ahmed
,
S. H.
,
Kendaragama
,
K. M. N.
, and
Neththipola
,
M. M. T. D.
, “
Biophysical and biochemical features' feedback associated with a flood episode in a tropical river basin model
,”
Environ. Monit. Assess.
195
(
4
),
504
(
2023
).
24.
Bilkovic
,
D. M.
,
Mitchell
,
M. M.
,
Davis
,
J.
,
Herman
,
J.
,
Andrews
,
E.
,
King
,
A.
et al, “
Defining boat wake impacts on shoreline stability toward management and policy solutions
,”
Ocean Coastal Manage.
182
,
104945
(
2019
).
25.
Blazejewski
,
R.
,
Pilarczyk
,
K. W.
, and
Przedwojski
,
B.
,
River Training Techniques: Fundamentals, Design and Applications
(
CRC Press
,
1995
).
26.
Brevis
,
W.
,
García-Villalba
,
M.
, and
Niño
,
Y.
, “
Experimental and large eddy simulation study of the flow developed by a sequence of lateral obstacles
,”
Environ. Fluid Mech.
14
,
873
893
(
2014
).
27.
Brolsma
,
J. U.
,
Six-Barge Pushtow Trials
(
PIANC
,
Den Haag
,
1988
).
28.
Brown
,
S. A.
,
Design of spur-type streambank stabilization structures
Report Nos. FHWA/RD-84/101 and SCR-371-83-039 (
Turner-Fairbank Highway Research Center
,
1985
).
29.
Cai
,
Y.
,
Cao
,
Z.
,
Wang
,
Y.
,
Guo
,
Z.
, and
Chen
,
R.
, “
Experimental and numerical study of the tidal bore impact on a newly-developed sheet-pile groin in Qiantang river
,”
Appl. Ocean Res.
81
,
106
115
(
2018
).
30.
Chabert
,
J.
and
Engeldinger
,
P.
,
Study of Scour Around Bridge Piers
(
Laboratoire National d'Hydraulique
,
1956
).
31.
Chakraborty
,
M.
,
Sriram
,
V.
, and
Murali
,
K.
, “
Field measurement and analysis of ship generated waves in Hooghly river, India
,”
Appl. Ocean Res.
128
,
103337
(
2022
).
32.
Chanson
,
H.
, “
The tidal bore of the Seine river, France. Le Mascaret de la Seine
,” in
Internet Resource
,
2000
.
33.
Chanson
,
H.
, “
Photographic observations of tidal bores (Mascarets) in France
,” Hydraulic model Report No. CH71/08 (
Division of Civil Engineering, The University of Queensland
,
Brisbane, Australia
,
2008
), pp.
104
, 1 movie, 2 audio files.
34.
Chanson
,
H.
, “
Undular tidal bores: Basic theory and free-surface characteristics
,”
J. Hydraul. Eng.
136
(
11
),
940
944
(
2010
).
35.
Chanson
,
H.
, “
Current knowledge in tidal bores and their environmental, ecological and cultural impacts
,”
Environ. Fluid Mech.
11
,
77
98
(
2011
).
36.
Chanson
,
H.
,
Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations
(
World Scientific
,
2012
).
37.
Chen
,
F. Y.
and
Ikeda
,
S.
, “
Horizontal separation flows in shallow open channels with spur dikes
,”
J. Hydrosci. Hydraul. Eng.
15
(
2
),
15
30
(
1997
).
38.
Cheng
,
Y.
,
Xia
,
J.
,
Zhou
,
M.
,
Deng
,
S.
,
Li
,
D.
,
Li
,
Z.
, and
Wan
,
Z.
, “
Recent variation in channel erosion efficiency of the Lower Yellow river with different channel patterns
,”
J. Hydrol.
610
,
127962
(
2022
).
39.
Cheng
,
Y.
,
Xia
,
J.
,
Zhou
,
M.
,
Deng
,
S.
,
Wang
,
Z.
, and
Lu
,
J.
, “
Parameter sensitivity and uncertainty of a one-dimensional morphodynamic model in the Lower Yellow River
,”
J. Hydrol.
625
,
130016
(
2023
).
40.
Chiew
,
Y. M.
, “
Local scour at bridge piers
,”
Doctoral dissertation
(
Research Space@ Auckland
,
1984
).
41.
Criss
,
R. E.
and
Shock
,
E. L.
, “
Flood enhancement through flood control
,”
Geology
29
(
10
),
875
878
(
2001
).
42.
Criss
,
R. E.
,
Rising Flood Stages on the Lower Missouri River
(
Department of Earth & Planetary Sciences, Washington University in St. Louis
,
2002
), p.
7
43.
Dehghani
,
A. A.
,
Azamathulla
,
H. M.
,
Najafi
,
S. H.
, and
Ayyoubzadeh
,
S. A.
, “
Local scouring around L-head groynes
,”
J. Hydrol.
504
,
125
131
(
2013
).
44.
Dempwolff
,
L. C.
,
Windt
,
C.
,
Melling
,
G.
,
Bihs
,
H.
,
Holzwarth
,
I.
, and
Goseberg
,
N.
, “
Ship wave–induced hydraulic loading on estuarine groins: A conceptual numerical study
,”
J. Waterw., Port, Coastal, Ocean Eng.
149
(
3
),
04023002
(
2023
).
45.
Dietze
,
M.
,
Bell
,
R.
,
Ozturk
,
U.
,
Cook
,
K. L.
,
Andermann
,
C.
,
Beer
,
A. R.
et al, “
More than heavy rain turning into fast-flowing water—A landscape perspective on the 2021 Eifel floods
,”
Nat. Hazards Earth Syst. Sci.
22
(
6
),
1845
1856
(
2022
).
46.
Ding
,
C.
,
Li
,
C.
,
Song
,
L.
, and
Chen
,
S.
, “
Numerical investigation on flow characteristics in a mildly meandering channel with a series of groynes
,”
Sustainability
15
(
5
),
4124
(
2023
).
47.
Domingo
,
V. A.
, “
Technical standards and guidelines for planning of flood control structures
,”
Development
111
(
9.2
),
5
(
2010
).
48.
Duan
,
J. G.
and
Nanda
,
S. K.
, “
Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field
,”
J. Hydrol.
327
(
3–4
),
426
437
(
2006
).
49.
Duan
,
J. G.
, “
Mean flow and turbulence around a laboratory spur dike
,”
J. Hydraul. Eng.
135
(
10
),
803
811
(
2009
).
50.
Duan
,
J. G.
,
He
,
L.
,
Fu
,
X.
, and
Wang
,
Q.
, “
Mean flow and turbulence around experimental spur dike
,”
Adv. Water Resour.
32
(
12
),
1717
1725
(
2009
).
51.
Duan
,
J.
,
He
,
L.
,
Wang
,
G.
, and
Fu
,
X.
, “
Turbulent burst around experimental spur dike
,”
Int. J. Sediment Res.
26
(
4
),
471
523
(
2011
).
52.
Dubey
,
A. K.
,
Gupta
,
P. K.
,
Dutta
,
S.
, and
Singh
,
R. P.
, “
An improved methodology to estimate river stage and discharge using Jason-2 satellite data
,”
J. Hydrol.
529
,
1776
1787
(
2015
).
53.
Duc Tran
,
D.
,
Van Halsema
,
G.
,
Hellegers
,
P. J.
,
Phi Hoang
,
L.
,
Quang Tran
,
T.
,
Kummu
,
M.
, and
Ludwig
,
F.
, “
Assessing impacts of dike construction on the flood dynamics of the Mekong Delta
,”
Hydrol. Earth Syst. Sci.
22
(
3
),
1875
1896
(
2018
).
54.
Duró
,
G.
,
Crosato
,
A.
,
Kleinhans
,
M. G.
,
Roelvink
,
D.
, and
Uijttewaal
,
W. S. J.
, “
Bank erosion processes in regulated navigable rivers
,”
J. Geophys. Res.
125
(
7
),
e2019JF005441
, https://doi.org/10.1029/2019JF005441 (
2020a
).
55.
Duró
,
G.
,
Crosato
,
A.
,
Kleinhans
,
M. G.
,
Winkels
,
T. G.
,
Woolderink
,
H. A.
, and
Uijttewaal
,
W. S.
, “
Distinct patterns of bank erosion in a navigable regulated river
,”
Earth Surf. Processes Landforms
45
(
2
),
361
374
(
2020b
).
56.
ECAFE
,
U.
,
United Nations Economic Commission for Asia and the Far East River Training and Bank Protection, Flood Control Series No. 4, Institutional Repository—ESCAP
(
ECAFE
,
1953
).
57.
Elawady
,
E.
,
Michiue
,
M.
, and
Hinokidani
,
O.
, “
Movable bed scour around submerged spur-dikes
,”
Proc. Hydraul. Eng.
45
,
373
378
(
2001
).
58.
El-Rashedy
,
S. F.
,
Ezzeldin
,
M. M.
, and
Sarhan
,
T. A.
, “
Influence of spur dikes shapes on scour characteristics
,”
Int. J. Sci. Eng. Res.
9
(
6
),
1285
1301
(
2018
).
59.
Ettema
,
R.
and
Muste
,
M.
, “
Scale effects in flume experiments on flow around a spur dike in flatbed channel
,”
J. Hydraul. Eng.
130
(
7
),
635
646
(
2004
).
60.
Fang
,
D.
,
Sui
,
J.
,
Thring
,
R. W.
, and
Zhang
,
H.
, “
Impacts of dimension and slope of submerged spur dikes on local scour processes- an experimental study
,”
Int. J. Sediment Res.
21
(
2
),
89
100
(
2006
).
61.
Farshad
,
R.
,
Kashefipour
,
S. M.
,
Ghomeshi
,
M.
, and
Oliveto
,
G.
, “
Temporal scour variations at permeable and angled spur dikes under steady and unsteady flows
,”
Water
14
,
3310
(
2022
).
62.
Fenwick
,
G. B.
, “
State of knowledge of channel stabilization in major alluvial rivers
,” Report No. FHWA/RD-83/099 (
Committee on Channel Stabilization
,
1969
).
63.
Franco
,
J. J.
, “
Research for river regulation dike design
,”
J. Waterw. Harbors Div.
93
(
3
),
71
87
(
1967
).
64.
Gao
,
Y.
,
Yang
,
H.
,
Wang
,
L.
, and
Zhao
,
M.
, “
Three-dimensional numerical investigation on flow behaviors around a diversion dike
,”
Phys. Fluids
34
(
12
),
125119
(
2022
).
65.
Gao
,
L.
,
Zhang
,
L.
,
Hong
,
Y.
,
Chen
,
H. X.
, and
Feng
,
S. J.
, “
Flood hazards in urban environment
,”
Georisk
17
,
241
261
(
2023
).
66.
Garanaik
,
A.
and
Sholtes
,
J.
,
River Bank Protection
(
Hearst Corporation
,
New York
,
2013
).
67.
Garde
,
R. J.
,
Subramanya
,
K.
, and
Nambudripad
,
K. D.
, “
Study of scour around spur-dikes
,”
J. Hydraul. Div.
87
(
6
),
23
37
(
1961
).
68.
Ghodsian
,
M.
and
Vaghefi
,
M.
, “
Experimental study on scour and flow field in a scour hole around a T-shape spur dike in a 90° bend
,”
Int. J. Sediment Res.
24
(
2
),
145
158
(
2009
).
69.
Giri
,
S.
,
Shimizu
,
Y.
, and
Surajate
,
B.
, “
Laboratory measurement and numerical simulation of flow and turbulence in a meandering-like flume with spurs
,”
Flow Meas. Instrum.
15
(
5–6
),
301
309
(
2004
).
70.
Gisonni
,
C.
,
Hager
,
W. H.
, and
Unger
,
J.
, “
Spurs in river engineering—A preliminary review
,” in
31st IAHR Congress
, Seoul, Korea (
Korean Society of Water Resources
,
2005
), pp.
1894
1901
.
71.
Gisonni
,
C.
and
Hager
,
W. H.
, “
Spur failure in river engineering
,”
J. Hydraul. Eng.
134
(
2
),
135
145
(
2008
).
72.
Gu
,
Z. P.
,
Akahori
,
R.
, and
Ikeda
,
S.
, “
Study on the transport of suspended sediment in an open channel flow with permeable spur dikes
,”
Int. J. Sediment Res.
26
(
1
),
96
111
(
2011
).
73.
Hager
,
W. H.
and
Oliveto
,
G.
, “
Shields' entrainment criterion in bridge hydraulics
,”
J. Hydraul. Eng.
128
(
5
),
538
542
(
2002
).
74.
Haider
,
R.
,
Qiao
,
D.
,
Wang
,
X.
,
Yan
,
J.
, and
Ning
,
D.
, “
Role of grouped piles on flow characteristics around impermeable spur dike
,”
Int. J. Civ. Eng.
20
(
8
),
869
883
(
2022
).
75.
Hajibehzad
,
M. S.
,
Bejestan
,
M. S.
,
Ferro
,
V.
, and
Avarand
,
R.
, “
Mean flow, secondary currents and bed shear stress at a 180-degree laboratory bend with and without enhanced permeable groins as an Eco-friendly river structure
,”
J. Hydro-Environ. Res.
44
,
12
22
(
2022
).
76.
Han
,
X.
and
Lin
,
P.
, “
3D numerical study of the flow properties in a double-spur dikes field during a flood process
,”
Water
10
(
11
),
1574
(
2018
).
77.
Hashemi Najafi
,
S. F. A.
,
Ayyoubzade
,
S. A.
, and
Dehghani
,
A. A.
, “
Experimental investigation of scouring around L-head groynes under clear water condition
,”
J. Agric. Sci. Nat. Resour.
15
(
1
),
192
203
(
2008
).
78.
Havinga
,
H.
,
Slootweg
,
H.
, and
Zeekant
,
J.
, “
Kribvakmeting t.B.V. Zesbaksduwvaart op de waal bij druten
,” 84.9, Rijkswaterstaat, district Zuidoost, Arnhem,
1984
.
79.
Higham
,
J. E.
,
Brevis
,
W.
,
Keylock
,
C. J.
, and
Safarzadeh
,
A.
, “
Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow
,”
Adv. Water Resour.
107
,
451
459
(
2017
).
80.
Ho
,
J.
,
Yeo
,
H. K.
,
Coonrod
,
J.
, and
Ahn
,
W.
, “
Numerical modeling study for flow pattern changes induced by single groyne
,” in
Proceedings of the Congress-International Association for Hydraulic Research
(
IAHR
,
2007
), Vol.
32
, p.
662
.
81.
Huang
,
M.
and
Jia
,
C. Q.
, “
Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage
,”
Comput. Geotech.
36
(
1–2
),
93
101
(
2009
).
82.
Huang
,
W.
,
Creed
,
M.
,
Chen
,
F.
,
Liu
,
H.
, and
Ma
,
A.
, “
Scour around submerged spur dikes with flexible mattress protection
,”
J. Waterw., Port, Coastal, Ocean Eng.
144
(
5
),
04018013
(
2018
).
83.
Huang
,
Z.
,
Ouahsine
,
A.
,
Du
,
P.
, and
Ding
,
D.
, “
Computational fluid dynamics predictions of critical hydrodynamics thresholds in the erodibility of inland waterway bank by ship-induced waves
,”
Ocean Eng.
266
,
112825
(
2022
).
84.
Ikeda
,
S.
,
Yoshiike
,
T.
, and
Sugimoto
,
T.
, “
Experimental study on the structure of open channel flow with impermeable spur dikes
,”
Proc. Hydraul. Eng.
43
,
281
286
(
1999
).
85.
IRC 89, “
Guidelines for design and construction of river training and control works for road bridges
,” Standard No. IRC 89 (
Indian Roads Congress
,
1997
).
86.
Indulekha
,
K. P.
,
Jayasree
,
P. K.
, and
Sachin
,
S.
, “
Simulation of flow pattern around series of groynes with different orientations in meandering channels
,”
IOP Conf. Ser.
1114
,
012024
(
2021
).
87.
Indulekha
,
K. P.
,
Jayasree
,
P. K.
, and
Balan
,
K.
, “
Assessment of best configuration of cocolog groynes in meanders considering scouring and flow patterns—An experimental study
,”
J. Nat. Fibers
20
(
1
),
2162181
(
2023
).
88.
Iqbal
,
S.
,
Pasha
,
G. A.
,
Ghani
,
U.
,
Ullah
,
M. K.
, and
Ahmed
,
A.
, “
Flow dynamics around permeable spur dike in a rectangular channel
,”
Arab. J. Sci. Eng.
46
(
5
),
4999
5011
(
2021
).
89.
Iqbal
,
S.
and
Tanaka
,
N.
, “
Experimental study on flow characteristics and energy reduction around a hybrid dike
,”
Int. J. Civ. Eng.
21
,
1045
1015
(
2023
).
90.
IRC: 89,
Guidelines for design and construction of river training and control works for road bridges
,” Standard No.
IRC: 89
(
Indian Road Congress
,
Jamnagar House
,
1997
).
91.
IS 8237
, “
Code of practice for protection of slope for reservoir embankment
,” Standard No.
IS 8237
(
Indian Standards Institution
,
Manak Bhavan
,
1985
).
92.
IS 8408
, “
Planning and design of groynes in alluvial river—Guidelines
,” Standard No. IS 8408 (
Bureau of Indian Standards
,
Manak Bhavan
,
1976
).
93.
IS 8408
, “
Planning and design of groynes in alluvial river—Guidelines
,” Standard No. IS 8408 (
Bureau of Indian Standards
,
Manak Bhavan
,
1994
).
94.
Ishigaki
,
T.
and
Baba
,
Y.
, “
Local scour induced by 3D flow around attracting and deflecting groins
,” in
Proceedings of 2nd International Conference on Scour and Erosion
,
Meritus Mandarin, Singapore
,
2004
, Vol.
301
.
95.
Jafari
,
R.
, and
Sui
,
J.
, “
Velocity field and turbulence structure around spur dikes with different angles of orientation under ice covered flow conditions
,”
Water
13
(
13
),
1844
(
2021
).
96.
Jeon
,
J.
,
Lee
,
J. Y.
, and
Kang
,
S.
, “
Experimental investigation of three‐dimensional flow structure and turbulent flow mechanisms around a non-submerged spur dike with a low length‐to‐depth ratio
,”
Water Resour. Res.
54
(
5
),
3530
3556
, https://doi.org/10.1029/2017WR021582 (
2018
).
97.
JTS 154,
Code of design for breakwaters and revetments
,” Chinese Ministry of Transport (
2018
).
98.
Kang
,
J. G.
,
Yeo
,
H. K.
, and
Kim
,
S. J.
, “
An experimental study on tip velocity and downstream recirculation zone of single groyne conditions
,”
J. Korea Water Resour. Assoc.
38
(
2
),
143
153
(
2005
).
99.
Kang
,
J.
and
Yeo
,
H.
, “
Experimental study on the flow characteristics of type groyne
,”
Engineering
3
,
1002
(
2011a
).
100.
Kang
,
J.
,
Yeo
,
H.
,
Kim
,
S.
, and
Ji
,
U.
, “
Permeability effects of single groin on flow characteristics
,”
J. Hydraul. Res.
49
(
6
),
728
735
(
2011b
).
101.
Kang
,
S.
,
Khosronejad
,
A.
, and
Yang
,
X.
, “
Turbulent flow characteristics around a non-submerged rectangular obstacle on the side of an open channel
,”
Phys. Fluids
33
(
4
),
045106
(
2021a
).
102.
Kang
,
S.
,
Khosronejad
,
A.
,
Hill
,
C.
, and
Sotiropoulos
,
F.
, “
Mean flow and turbulence characteristics around single-arm instream structures
,”
J. Hydraul. Res.
59
(
3
),
404
419
(
2021b
).
103.
Karami
,
H.
,
Ardeshir
,
A.
,
Behzadian
,
K.
, and
Ghodsian
,
M.
Protective spur dike for scour mitigation of existing spur dikes
,”
J. Hydraul. Res.
49
(
6
),
809
813
(
2011
).
104.
Karami
,
H.
,
Basser
,
H.
,
Ardeshir
,
A.
, and
Hosseini
,
S. H.
, “
Verification of numerical study of scour around spur dikes using experimental data
,”
Water Environ. J.
28
(
1
),
124
134
(
2014
).
105.
King
,
H.
, “
The use of groynes for riverbank erosion protection
,” in
Proceeding of River Hydraulics, Stormwater and Flood Management Conference
(
University of Stellenbosch
,
2009
).
106.
Kim
,
K.
,
Lee
,
H.
, and
Jung
,
H.
, “
Changes in channel geomorphology and hydraulics by submerged spur dikes at a channelized stream
,”
Ecol. Resil. Infrastruct.
2
(
1
),
42
53
(
2015
).
107.
Klijn
,
F.
,
Samuels
,
P.
, and
Van Os
,
A.
, “
Towards flood risk management in the EU: State of affairs with examples from various European countries
,”
Int. J. River Basin Manage.
6
(
4
),
307
321
(
2008
).
108.
Klumpp
,
C. C.
and
Baird
,
D. C.
, “
Design of groins on the Middle rio grande
,” in
Hydraulic Engineering
(
ASCE
,
1991
), pp.
148
153
.
109.
Koch
,
C.
and
Chanson
,
H.
, “
Turbulent mixing beneath an undular bore front
,”
J. Coastal Res.
244
(
4
),
999
1007
(
2008
).
110.
Koken
,
M.
, “
Coherent structures around isolated spur dikes at various approach flow angles
,”
J. Hydraul. Res.
49
(
6
),
736
743
(
2011
).
111.
Koken
,
M.
and
Gogus
,
M.
, “
Effect of spur dike length on the horseshoe vortex system and the bed shear stress distribution
,”
J. Hydraul. Res.
53
(
2
),
196
206
(
2015
).
112.
Korswagen
,
P. A.
,
Harish
,
S.
,
Oetjen
,
J.
, and
Wüthrich
,
D.
(
2022
). “Post-flood field survey of the Ahr Valley (Germany): building damages and hydraulic aspects,” Dataset,
Delft University of Technology
, https://doi.org/10.4121/19222656
113.
Kothyari
,
U. C.
and
Ranga Raju
,
K. G.
, “
Scour around spur dikes and bridge abutments
,”
J. Hydraul. Res.
39
(
4
),
367
374
(
2001
).
114.
Krebs
,
M.
,
Zanke
,
U.
, and
Mewis
,
P.
, “
Hydro-morphodynamic modelling of groin fields
,” in
Proceedings of the 28th IAHR Congress
,
Graz
,
Austria
(
IAHR
,
1999
).
115.
Kuhnle
,
R. A.
,
Alonso
,
C. V.
, and
Shields
,
F. D.
, “
Geometry of scour holes associated with 90° spur dikes
,”
J. Hydraul. Eng.
125
(
9
),
972
978
(
1999
).
116.
Kuhnle
,
R. A.
,
Alonso
,
C. V.
, and
Shields
, Jr.,
F. D.
, “
Local scour associated with angled spur dikes
,”
J. Hydraul. Eng.
128
(
12
),
1087
1093
(
2002
).
117.
Kuhnle
,
R. A.
,
Jia
,
Y.
, and
Alonso
,
C. V.
, “
Measured and simulated flow near a submerged spur dike
,”
J. Hydraul. Eng.
134
(
7
),
916
924
(
2008
).
118.
Kuhnle
,
R.
, and
Alonso
,
C.
, “
Flow near a model spur dike with a fixed scoured bed
,”
Int. J. Sediment Res.
28
(
3
),
349
357
(
2013
).
119.
Kulkarni
,
S. B.
and
Wakalkar
,
V. M.
, “
Performance of anti-erosion works for protection at Palasbari-Gumi area along the river Brahmaputra
,”
ISH J. Hydraul. Eng.
5
(
2
),
22
30
(
1999
).
120.
Kumar
,
A.
and
Ojha
,
C. S. P.
, “
Near-bed turbulence around an unsubmerged L-head groyne
,”
ISH J. Hydraul. Eng.
27
,
182
189
(
2019a
).
121.
Kumar
,
A.
and
Ojha
,
C. S. P.
, “
Effect of different compositions in unsubmerged L-head groynes to mean and turbulent flow characteristics
,”
KSCE J. Civ. Eng.
23
,
4327
4338
(
2019b
).
122.
Liehong Ju
,
A.
,
Dengting Wang
,
B.
, and
Zhe Huang
,
C.
, “
Experimental study on sandy seabed scouring around submerged spur-dike under the action of wave and current
,” in
APAC: Proceedings of the 10th International Conference on Asian and Pacific Coasts, 2019
,
Hanoi, Vietnam
(
Springer Singapore
,
2020
), pp.
479
486
.
123.
Liu
,
J.
,
Tominaga
,
A.
, and
Nagao
,
M.
, “
Numerical simulation of the flow around the spur dikes with certain configuration and angles with bank
,”
J. Hydrosci. Hydraul. Eng.
12
(
2
),
85
100
(
1994
).
124.
Li
,
J.
,
Chen
,
J. Y.
,
Xu
,
Q.
, and
Sun
,
X.
, “
Study on the influence factors of landslide surge wave on the impact pressure on dam's surface
,”
J. Hydraul. Eng.
49
,
232
240
(
2018
).
125.
Ma
,
B.
,
Dong
,
F.
,
Peng
,
W. Q.
,
Liu
,
X. B.
,
Huang
,
A. P.
,
Zhang
,
X. H.
, and
Liu
,
J. Z.
, “
Evaluation of impact of spur dike designs on enhancement of aquatic habitats in urban streams using 2D habitat numerical simulations
,”
Global Ecol. Conserv.
24
,
e01288
(
2020
).
126.
Mansoori
,
A. R.
, “
Study on flow and sediment transport around series of spur dikes with different head shape
,”
Doctoral dissertation
(
Kyoto University
,
2014
).
127.
Masjedi
,
A.
,
Akbari
,
I.
, and
Abyar
,
H.
, “
Evaluating scour at L-shape spur dike in a 180 degree bend
,”
World Appl. Sci. J.
15
(
12
),
1740
1745
(
2011
).
128.
Masjedi
,
A.
,
Bejestan
,
M. S.
, and
Esfandi
,
A.
, “
Experimental study on local scour around single oblong pier fitted with a collar in a 180 degree flume bend
,”
Int. J. Sediment Res.
25
(
3
),
304
312
(
2010
).
129.
Mehraein
,
M.
,
Ghodsian
,
M.
,
Khosravi Mashizi
,
M.
, and
Vaghefi
,
M.
, “
Experimental study on flow pattern and scour hole dimensions around a T-shaped spur dike in a channel bend under emerged and submerged conditions
,”
Int. J. Civ. Eng.
15
,
1019
1034
(
2017
).
130.
Melling
,
G.
,
Jansch
,
H.
,
Kondziella
,
B.
,
Uliczka
,
K.
,
Gätje
,
B.
,
Goseberg
,
N.
, and
Schlurmann
,
T.
, “
Damage to rock groynes from long-period ship waves: Towards a probabilistic design method
,” in
Coastal Structures Conference
,
2019
.
131.
Melville
,
B. W.
and
Coleman
,
S. E.
,
Bridge Scour
(
Water Resources Publication
,
2000
).
132.
Melville
,
B.
,
Van Ballegooy
,
S.
,
Coleman
,
S.
, and
Barkdoll
,
B.
, “
Countermeasure toe protection at spill-through abutments
,”
J. Hydraul. Eng.
132
(
3
),
235
245
(
2006
).
133.
Mirzaei
,
H.
,
Asadi
,
M.
,
Tootoonchi
,
H.
, and
Ramezani
,
A.
, “
Numerical simulation of secondary flow around the open and close groins in channel with movable bed
,”
Modeling Earth Syst. Environ.
8
,
3823
3834
(
2021
).
134.
Molls
,
T.
,
Chaudhry
,
M. H.
, and
Khan
,
K. W.
, “
Numerical simulation of two-dimensional flow near a spur-dike
,”
Adv. Water Resour.
18
(
4
),
227
236
(
1995
).
135.
Mouaze
,
D.
,
Chanson
,
H.
, and
Simon
,
B.
, “
Field measurements in the tidal bore of the Sélune River in the Bay of Mont Saint Michel (September 2010)
,” Report No. CH81/10 (
The University of Queensland
,
2010
).
136.
Mousavi
,
S. A. S.
,
Mehrnahad
,
A. R.
, and
Pirestani
,
M. R.
, “
Three-dimensional numerical model and laboratory for flow and bed deformation around a T-shape spur dike in a 90° Bend
,” in
Proceedings of 6th International Conference on Scour and Erosion
,
Paris
,
France
,
2012
.
137.
Mulahasan
,
S.
,
Saleh
,
M. S.
, and
Muhsun
,
S. S.
, “
Simulation of flow around a permeable dike using physical and 3D-CFD models
,”
Int. J. River Basin Manage.
21
(
1
),
53
65
(
2021
).
138.
Nakagawa
,
H.
,
Zhang
,
H.
,
Baba
,
Y.
,
Kawaike
,
K.
, and
Teraguchi
,
H.
, “
Hydraulic characteristics of typical bank‐protection works along the Brahmaputra/Jamuna River, B Bangladesh
,”
J. Flood Risk Manage.
6
(
4
),
345
359
(
2013
).
139.
Nath
,
D.
and
Misra
,
U. K.
, “
Experimental study of local scour around single spur dike in an open channel
,”
Int. Res. J. Eng. Technol.
4
(
6
),
2728
2734
(
2017
).
140.
Ning
,
J.
,
Li
,
G.
, and
Li
,
S.
, “
Numerical simulation of the influence of spur dikes spacing on local scour and flow
,”
Appl. Sci.
9
(
11
),
2306
(
2019
).
141.
Pan
,
D.
and
Li
,
Y.
, “
Tidal bore scour around a spur dike
,”
J. Mar. Sci. Eng.
10
(
8
),
1086
(
2022
).
142.
Pandey
,
M.
,
Ahmad
,
Z.
, and
Sharma
,
P. K.
, “
Scour around impermeable spur dikes: A review
,”
ISH J. Hydraul. Eng.
24
(
1
),
25
44
(
2018
).
143.
Pandey
,
M.
,
Valyrakis
,
M.
,
Qi
,
M.
,
Sharma
,
A.
, and
Lodhi
,
A. S.
, “
Experimental assessment and prediction of temporal scour depth around a spur dike
,”
Int. J. Sediment Res.
36
(
1
),
17
28
(
2021
).
144.
Pandey
,
M.
,
Jamei
,
M.
,
Ahmadianfar
,
I.
,
Karbasi
,
M.
,
Lodhi
,
A. S.
, and
Chu
,
X.
, “
Assessment of scouring around spur dike in cohesive sediment mixtures: A comparative study on three rigorous machine learning models
,”
J. Hydrol.
606
,
127330
(
2022
).
145.
Patel
,
H. K.
,
Arora
,
S.
,
Chavan
,
R.
, and
Kumar
,
B.
, “
Migrating scour depth around a spur dike with downward seepage using multiscale characterizations
,”
Exp. Therm. Fluid Sci.
151
,
111071
(
2024
).
146.
Patel
,
H. K.
and
Kumar
,
B.
, “
Hydro-morphological behavior around T-shaped spur dikes with downward seepage
,”
Sci. Rep.
13
(
1
),
10454
(
2023
).
147.
Patel
,
H. K.
and
Kumar
,
B.
, “
Experimental study on the optimal spur dike shape under downward seepage
,”
Water Sci.
38
(
1
),
172
191
(
2024
).
148.
Patel
,
H. K.
,
Qi
,
M.
, and
Kumar
,
B.
, “
Downward seepage effects on flow near a L-shape spur dike and bed morphology
,”
Int. J. Sediment Res.
39
(
2
),
194
208
(
2023
).
149.
Pennington
,
C. H.
,
Shields
, Jr.,
F. D.
,
Sjostrom
,
J. W.
, and
Myers
,
K. A.
,
Biological and physical effects of Missouri River spur dike notching (No. WES/MP/EL-88–11)
(
Army Engineer Waterways Experiment Station Environmental Lab
,
Vicksburg, MS
,
1988
).
150.
Peng
,
J.
,
Kaw Ahara
,
Y.
, and
Tamai
,
N.
, “
Numerical analysis of three-dimensional turbulent flows around submerged groins
,” in
Stream Stability and Scour at Highway Bridges: Compendium of Stream Stability and Scour Papers Presented at Conferences Sponsored by the Water Resources Engineering (Hydraulics) Division of the American Society of Civil Engineers
(
ASCE
,
1997
), p.
675
.
151.
Pilarczyk
,
K.
,
Dikes and Revetments: Design, Maintenance and Safety Assessment
(
Routledge
,
2017
).
152.
Pinter
,
N.
,
Thomas
,
R.
, and
Wlosinski
,
J. H.
, “
Assessing flood hazard on dynamic rivers
,”
EoS. Trans.
82
(
31
),
333
339
(
2001
).
153.
Pinter
,
N.
,
van der Ploeg
,
R. R.
,
Schweigert
,
P.
, and
Hoefer
,
G.
, “
Flood magnification on the River Rhine
,”
Hydrol. Process.
20
(
1
),
147
164
(
2006
).
154.
Pinter
,
N.
,
Huthoff
,
F.
,
Dierauer
,
J.
,
Remo
,
J. W. F.
, and
Damptz
,
A.
, “
Modeling residual flood risk behind levees, Upper Mississippi River, USA
,”
Environ. Sci. Policy
58
,
131
140
(
2016
).
155.
Pourshahbaz
,
H.
,
Abbasi
,
S.
,
Pandey
,
M.
,
Pu
,
J. H.
,
Taghvaei
,
P.
, and
Tofangdar
,
N.
, “
Morphology and hydrodynamics numerical simulation around groynes
,”
ISH J. Hydraul. Eng.
28
(
1
),
53
61
(
2022
).
156.
Przedwojski
,
B.
, “
Bed topography and local scour in rivers with banks protected by groynes
,”
J. Hydraul. Res.
33
(
2
),
257
273
(
1995
).
157.
Rajaratnam
,
N.
and
Nwachukwu
,
B. A.
, “
Flow near groin-like structures
,”
J. Hydraul. Eng.
109
(
3
),
463
480
(
1983
).
158.
Raja
,
N. B.
,
Çiçek
,
I.
,
Türkoğlu
,
N.
,
Aydin
,
O.
, and
Kawasaki
,
A.
, “
Landslide susceptibility mapping of the Sera River Basin using logistic regression model
,”
Nat. Hazards
85
,
1323
1346
(
2017
).
159.
Reungoat
,
D.
,
Chanson
,
H.
, and
Keevil
,
C. E.
, “
Field measurements of unsteady turbulence in a tidal bore: The Garonne River in October 2013
,”
J. Hydraul. Res.
53
(
3
),
291
301
(
2015
).
160.
Richardson
,
E. V.
,
Stevens
,
M. A.
, and
Simons
,
D. B.
, “
The design of spurs for river training
,” in
Proceedings of the IAHR 16th Congress
(IAHR,
1975
), pp.
382
388
.
161.
Richardson
,
E. V.
and
Simons
,
D. B.
, “
Use of spurs and guide banks for highway crossings
,”
Transp. Res. Rec.
950
(
2
),
184
193
(
1984
).
162.
Rizwan
,
M.
,
Li
,
X.
,
Chen
,
Y.
,
Anjum
,
L.
,
Hamid
,
S.
,
Yamin
,
M.
et al, “
Simulating future flood risks under climate change in the source region of the Indus River
,”
J. Flood Risk Manage.
16
(
1
),
e12857
(
2023
).
163.
Roy-Biswas
,
T.
and
Sen
,
D.
, “
Tidal bore dynamics of a mixed estuary: The Hooghly River, India
,”
J. Waterw., Port, Coastal, Ocean Eng.
149
(
1
),
05022005
(
2023
).
164.
Safarzadeh
,
A.
,
Neyshabouri
,
S. A. A. S.
, and
Zarrati
,
A. R.
, “
Experimental investigation on 3D turbulent flow around straight and T-shaped groynes in a flat bed channel
,”
J. Hydraul. Eng.
142
(
8
),
04016021
(
2016
).
165.
Shampa
,
Hasegawa
,
Y.
,
Nakagawa
,
H.
,
Takebayashi
,
H.
, and
Kawaike
,
K.
, “
Three-dimensional flow characteristics in slit-type permeable spur dike fields: Efficacy in riverbank protection
,”
Water
12
(
4
),
964
(
2020
).
166.
Singh
,
V. P.
,
Sharma
,
N.
, and
Ojha
,
C. S. P.
,
The Brahmaputra Basin Water Resources
(
Springer Science & Business Media
,
2004
), Vol.
47
.
167.
Soliman
,
M. M.
,
Attia
,
K. M.
,
Talaat
,
A. M.
, and
Ahmed
,
A. F.
, “
Spur dike effects on the River Nile morphology after high Aswan dam
,” in
Managing Water: Coping with Scarcity and Abundance
(
ASCE
,
1996
), pp.
805
810
.
168.
Sparks
,
R. E.
, “
Need for ecosystem management of large rivers and their floodplains
,”
BioScience
45
(
3
),
168
182
(
1995
).
169.
Sukhodolov
,
A.
,
Engelhardt
,
C.
,
Krüger
,
A.
, and
Bungartz
,
H.
, “
Case study: Turbulent flow and sediment distributions in a groyne field
,”
J. Hydraul. Eng.
130
(
1
),
1
9
(
2004
).
170.
Sukhodolov
,
A.
,
Uijttewaal
,
W. S.
, and
Engelhardt
,
C.
, “
On the correspondence between morphological and hydrodynamical patterns of groyne fields
,”
Earth Surf. Processes Landforms
27
(
3
),
289
305
(
2002
).
171.
Sumer
,
B. M.
, “
Mathematical modelling of scour: A review
,”
J. Hydraul. Res.
45
(
6
),
723
735
(
2007
).
172.
Sun
,
X.
, “
Study on landslide surge and its impact on gravity spur dike based on SPH method
,” Doctoral
dissertation
(
Wuhan University of Technology
,
Wuhan
,
China
,
2016
).
173.
Ten Brinke
,
W. B. M.
,
Kruyt
,
N. M.
,
Kroon
,
A.
, and
Van den Berg
,
J. H.
, “
Erosion of sediments between groynes in the River Waal as a result of navigation traffic
,”
Fluvial Sedimentology VI
(
Wiley
,
1999
), pp.
147
160
.
174.
Teraguchi
,
H.
,
Nakagawa
,
H.
,
Muto
,
Y.
,
Baba
,
Y.
, and
Zhang
,
H.
, “
Effects of groins on the flow and bed deformation in non-submerged conditions
,” in
DPRI Annual Reports 2022
,
2008
.
175.
Teraguchi
,
H.
,
Nakagawa
,
H.
,
Kawaike
,
K.
,
Baba
,
Y.
, and
Zhang
,
H.
, “
Effects of hydraulic structures on river morphological processes
,”
Int. J. Sediment Res.
26
(
3
),
283
303
(
2011
).
176.
Tominaga
,
A.
,
Ijima
,
K.
, and
Nakano
,
Y.
, “
Flow structures around submerged spur dikes with verious relative height
,” in
Proceedings of the 29th IAHR World Congress (
Tsinghua University Press
,
2001
), pp.
421
427
.
177.
Tripathi
,
R. P.
and
Pandey
,
K. K.
, “
Experimental study of local scour around T-shaped spur dike in a meandering channel
,”
Water Supply
21
(
2
),
542
552
(
2021
).
178.
Uijttewaal
,
W. S. J.
,
Lehmann
,
D. V.
, and
Mazijk
,
A. V.
, “
Exchange processes between a river and its groyne fields: Model experiments
,”
J. Hydraul. Eng.
127
(
11
),
928
936
(
2001
).
179.
Uijttewaal
,
W. S.
, “
Effects of groyne layout on the flow in groyne fields: Laboratory experiments
,”
J. Hydraul. Eng.
131
(
9
),
782
791
(
2005
).
180.
Unger
,
J.
and
Hager
,
W. H.
, “
Riprap failure at circular bridge piers
,”
J. Hydraul. Eng.
132
(
4
),
354
362
(
2006
).
181.
USACE
, “
Chapter 7: Improvement of natural stream channels
,”
Engineering and Design—Layout and Design of Shallow-Draft Waterways
(
USACE
,
1980
).
182.
Vaghefi
,
M.
,
Ghodsian
,
M.
, and
Salehi Neyshaboori
,
S. A. A.
, “
Experimental study on the effect of a T-shaped spur dike length on scour in a 90 channel bend
,”
Arabian J. Sci. Eng.
34
(
2
),
337
(
2009
).
183.
Vaghefi
,
M.
,
Ghodsian
,
M.
, and
Neyshabouri
,
S. A. A. S.
, “
Experimental study on scour around a T-shaped spur dike in a channel bend
,”
J. Hydraul. Eng.
138
(
5
),
471
474
(
2012
).
184.
Vaghefi
,
M.
,
Ahmadi
,
A.
, and
Faraji
,
B.
, “
The effect of support structure on flow patterns around T-shape spur dike in 90° bend channel
,”
Arabian J. Sci. Eng.
40
,
1299
1307
(
2015a
).
185.
Vaghefi
,
M.
,
Alavinezhad
,
M.
, and
Akbari
,
M.
, “
The effect of submergence ratio on flow pattern around short T-head spur dike in a mild bend with rigid bed using numerical model
,”
J. Chin. Inst. Eng.
39
(
6
),
666
674
(
2016a
).
186.
Vaghefi
,
M.
,
Ghodsian
,
M.
, and
Akbari
,
M.
, “
Experimental investigation on 3D flow around a single T-shaped spur dike in a bend
,”
Period. Polytech., Civil Eng.
61
(
3
),
462
470
(
2017
).
187.
Vaghefi
,
M.
,
Faraji
,
B.
,
Akbari
,
M.
, and
Eghbalzadeh
,
A.
, “
Numerical investigation of flow pattern around a T-shaped spur dike in the vicinity of attractive and repelling protective structures
,”
J. Braz. Soc. Mech. Sci. Eng.
40
,
93
(
2018
).
188.
Vaghefi
,
M.
,
Radan
,
P.
, and
Akbari
,
M.
, “
Flow pattern around attractive, vertical, and repelling T-shaped spur dikes in a mild bend using CFD modeling
,”
Int. J. Civ. Eng.
17
,
607
617
(
2019
).
189.
Vaghefi
,
M.
,
Safarpoor
,
Y.
, and
Hashemi
,
S. S.
, “
Effects of relative curvature on the scour pattern in a 90° bend with a T-shaped spur dike using a numerical method
,”
Int. J. River Basin Manage.
13
(
4
),
501
514
(
2015b
).
190.
Vaghefi
,
M.
,
Safarpoor
,
Y.
, and
Akbari
,
M.
, “
Numerical investigation of flow pattern and components of three-dimensional velocity around a submerged T-shaped spur dike in a 90° bend
,”
J. Cent. South Univ.
23
,
2984
2998
(
2016b
).
191.
Villarini
,
G.
,
Smith
,
J. A.
,
Serinaldi
,
F.
, and
Ntelekos
,
A. A.
, “
Analyses of seasonal and annual maximum daily discharge records for central Europe
,”
J. Hydrol.
399
(
3–4
),
299
312
(
2011
).
192.
Wang
,
Y.
,
Fu
,
X.
, and
Wang
,
G.
, “
Conceptual model for simulating the adjustments of bankfull characteristics in the Lower Yellow River, China
,”
J. Appl. Math.
2014
,
852174
.
193.
Wang
,
M.
,
Tian
,
Y.
, and
Li
,
X.
, “
Experimental study on pressure distribution of spur dike under the combined action of landslide surge and water flow
,”
AIP Adv.
12
(
7
),
075305
(
2022
).
194.
Wasson
,
R. J.
,
Jain
,
V.
,
Katuri
,
A.
,
Lahiri
,
S.
,
Parkash
,
S.
,
Singhvi
,
A. K.
et al, “
Riverine flood hazard: Part B. Disaster risk reduction in India
,”
Proc. Indian Natl. Sci. Acad.
85
(
1
),
65
76
(
2019
).
195.
Watson
,
C. C.
,
Biedenharn
,
D. S.
, and
Throne
,
C. R.
,
Demonstration Erosion Control Design Manual
(
U.S. Army Corps of Engineers
,
Vicksburg, MS
,
1999
), p.
274
.
196.
Weitbrecht
,
V.
,
Socolofsky
,
S. A.
, and
Jirka
,
G. H.
, “
Experiments on mass exchange between groin fields and main stream in rivers
,”
J. Hydraul. Eng.
134
(
2
),
173
183
(
2008
).
197.
WL|Delft_Hydraulics
, “
Kribvakerosie door zes-en vierbaksduwvaart op de waal
” Report No. Q 93/Q576, (
WL|Delft Hydraulics
,
Delft
,
1987
).
198.
Wu
,
B.
and
Molinas
,
A.
, “
Energy losses and threshold conditions for choking in channel contractions
,”
J. Hydraul. Res.
43
(
2
),
139
148
(
2005
).
199.
Wu
,
B.
,
Wang
,
G.
,
Ma
,
J.
, and
Zhang
,
R.
, “
Case study: River training and its effects on fluvial processes in the Lower Yellow River, China
,”
J. Hydraul. Eng.
131
(
2
),
85
96
(
2005
).
200.
Wu
,
T.
,
Sun
,
H.
,
Aires
,
R. G.
,
Cai
,
Y.
,
Wu
,
J.
, and
Zhang
,
Y.
, “
Analytical solution for sheet-pile groin vibrations under tidal bore excitation
,”
Mar. Georesour. Geotechnol.
41
,
493
508
(
2022
).
201.
Wu
,
T.
,
Zhang
,
Y.
,
Sun
,
H.
,
Galindo
,
R.
,
Wu
,
W.
, and
Cai
,
Y.
, “
Dynamic response of sheet–pile groin under tidal bore considering pile–pile mutual interaction and hydrodynamic pressure
,”
Soil Dyn. Earthquake Eng.
164
,
107568
(
2023a
).
202.
Wu
,
T.
,
Galindo
,
R.
,
Sun
,
H.
, and
Cai
,
Y.
, “
Dynamic responses of the sheet–pile groin under tidal bore considering the soil–structure–water interaction
,”
Ships Offshore Struct.
19
,
375
391
(
2023b
).
203.
Xiang
,
K.
,
Yang
,
Z.
,
Wu
,
S.
,
Gao
,
W.
,
Li
,
D.
, and
Li
,
Q.
, “
Flow hydrodynamics of the mixing layer in consecutive vegetated groyne fields
,”
Phys. Fluids
32
(
6
),
065110
(
2020
).
204.
Xu
,
F.
,
Zhou
,
H.
,
Zhou
,
J.
, and
Yang
,
X.
, “
A mathematical model for forecasting the dam-break flood routing process of a landslide dam
,”
Math. Probl. Eng.
2012
,
139642
.
205.
Xu
,
F. G.
,
Yang
,
X. G.
, and
Zhou
,
J. W.
, “
Experimental study of the impact factors of natural dam failure introduced by a landslide surge
,”
Environ. Earth Sci.
74
,
4075
4087
(
2015
).
206.
Xu
,
C. J.
,
Yin
,
M.
, and
Pan
,
X. D.
, “
Field test and numerical simulation of tidal bore pressures on sheet-pile groin in Qiantang River
,”
Mar. Georesour. Geotechnol.
34
(
4
),
303
312
(
2016
).
207.
Xu
,
H.
,
Li
,
Y.
,
Zhao
,
Z.
,
Wang
,
X.
, and
Zhang
,
F.
, “
Experimental study on the local scour of submerged spur dike heads under the protection of soft mattress in plain sand-bed rivers
,”
Water
15
(
3
),
413
(
2023
).
208.
Yazdi
,
J.
,
Sarkardeh
,
H.
,
Azamathulla
,
H. M.
, and
Ghani
,
A. A.
, “
3D simulation of flow around a single spur dike with free-surface flow
,”
Intl. J. River Basin Manage.
8
(
1
),
55
62
(
2010
).
209.
Yeo
,
H. K.
,
Kang
,
J. G.
, and
Kim
,
S. J.
, “
An experimental study on tip velocity and downstream recirculation zone of single groynes of permeability change
,”
KSCE J. Civ. Eng.
9
(
1
),
29
38
(
2005
).
210.
Yoshida
,
H.
and
Dittrich
,
A.
, “
1D unsteady-state flow simulation of a section of the upper Rhine
,”
J. Hydrol.
269
(
1–2
),
79
88
(
2002
).
211.
Yossef
,
M. F. M.
, “
The effect of groynes on Rivers: Literature review
,”
Delft Cluster Report No. DC1-334-4
(
Delft University
,
The Netherlands
,
2002
).
212.
Yossef
,
M. F. M.
, Morphodynamics of Rivers with Groynes (Delft University Press, Delft, Netherlands,
2005
), p. 240.
213.
Yossef
,
M. F.
and
Uijttewaal
,
W. S. J.
, “
On the dynamics of the flow near groynes in the context of morphological modelling
,” in
Proceedings of the 30th IAHR World Congress
(
IAHR
,
Thessaloniki, Greece
,
2003
), pp.
361
368
.
214.
Yossef
,
M. F.
and
de Vriend
,
H. J.
, “
Sediment exchange between a river and its groyne fields: Mobile-bed experiment
,”
J. Hydraul. Eng.
136
(
9
),
610
625
(
2010
).
215.
Yossef
,
M. F.
and
de Vriend
,
H. J.
, “
Flow details near river groynes: Experimental investigation
,”
J. Hydraul. Eng.
137
(
5
),
504
516
(
2011
).
216.
Yu
,
T.
,
Wang
,
P. Y.
,
Wang
,
M. L.
,
Yang
,
C. Y.
, and
Chen
,
L.
, “
Study on hydraulic characteristics and scouring mechanism of spur dike under unsteady flow
,” in
Study on Hydraulic Characteristics and Scouring Mechanism of Spur Dike under Unsteady Flow
(
Science Press
,
Beijing
,
2018
).
217.
Zamani
,
M.
,
Rabiefar
,
H.
, and
Rostami
,
M.
, “
Experimental evaluation of spur dikes placement position effect on the hydraulic and erosion conditions of intakes
,”
Water Supply
20
(
3
),
900
908
(
2020
).
218.
Zhang
,
H.
, “
Study on flow and bed deformation in channels with spur dyke
,” Doctoral dissertation (
Kyoto University
,
2005
).
219.
Zhang
,
H.
and
Nakagawa
,
H.
,
Scour Around Spur Dyke: Recent Advances and Future Researches
(
Annuals of the Disaster Prevention Research Institute
,
Kyoto University
,
2008
), Vol.
51
, pp.
633
652
.
220.
Zhang
,
Z.
,
Du
,
S.
,
Guo
,
Y.
,
Yang
,
Y.
,
Zeng
,
J.
,
Sui
,
T.
et al, “
Field study of local scour around bridge foundations on silty seabed under irregular tidal flow
,”
Coastal Eng.
185
,
104382
(
2023
).
221.
Zhang
,
Z.
,
Pan
,
C.
,
Zeng
,
J.
,
Chen
,
F.
,
Qin
,
H.
,
He
,
K.
et al, “
Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour
,”
Ocean Eng.
266
,
113140
(
2022
).
222.
Zhou
,
Y. J.
,
Qian
,
S.
, and
Sun
,
N. N.
, “
Application of permeable spur dike in mountain river training
,”
Appl. Mech. Mater.
641–642
,
236
240
(
2014
).
You do not currently have access to this content.