Self-oscillations underlie many natural phenomena, such as heartbeat, ocean waves, and the pulsation of variable stars. From pendulum clocks to the behavior of animal groups, self-oscillation is one of the keys to the understanding of synchronization phenomena and hence to the collective behavior of interacting systems. In this study, we consider two closely spaced bubbles pulsating in the kHz range in response to ultrasonic excitation. A translational bouncing motion emerges from their interaction with a much lower frequency than the bubble pulsation frequency. Our analysis reveals that the observed bubble bouncing exhibits the main features of self-oscillation, such as negative damping and the emergence of a limit cycle. These results highlight unexpected nonlinear effects in the field of microbubbles and give insights into the understanding of synchronization in large bubble clouds.

1.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
,
Theory of Oscillators
(
Pergamon Press
,
New York
,
1966
).
2.
P. S.
Landa
,
Nonlinear Oscillations and Waves in Dynamical Systems
(
Springer Science and Business Media
,
Dordrecht
,
1996
).
3.
A.
Jenkins
, “
Self-oscillation
,”
Phys. Rep.
525
(
2
),
167
222
(
2013
).
4.
P. S.
Landa
and
M. G.
Rosenblum
, “
Synchronization and chaotization of oscillations in coupled self-oscillating systems
,”
Appl. Mech. Rev.
46
(
7
),
414
426
(
1993
).
5.
H.
Zeng
,
M.
Lahikainen
,
L.
Liu
,
Z.
Ahmed
,
O. M.
Wani
,
M.
Wang
,
H.
Yang
, and
A.
Priimagi
, “
Light-fuelled freestyle self-oscillators
,”
Nat. Commun.
10
,
5057
(
2019
).
6.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
New York
,
2001
).
7.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
(
2012
).
8.
A.
Prosperetti
and
H. N.
Oguz
, “
The impact of drops on liquid surfaces and the underwater noise of rain
,”
Annu. Rev. Fluid Mech.
25
,
577
602
(
1993
).
9.
F.
Veron
, “
Ocean spray
,”
Annu. Rev. Fluid Mech.
47
,
507
538
(
2015
).
10.
O.
Vincent
,
P.
Marmottant
,
P. A.
Quinto-Su
, and
C.-D.
Ohl
, “
Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree
,”
Phys. Rev. Lett.
108
,
184502
(
2012
).
11.
F.
Reuter
,
S.
Lauterborn
,
R.
Mettin
, and
W.
Lauterborn
, “
Membrane cleaning with ultrasonically driven bubbles
,”
Ultrason. Sonochem.
37
,
542
560
(
2017
).
12.
I.
Lentacker
,
I. D.
Cock
,
R.
Deckers
,
S. C. D.
Smedt
, and
C. T. W.
Moonen
, “
Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms
,”
Adv. Drug Delivery Rev.
72
,
49
64
(
2014
).
13.
N.
Bertin
,
T. A.
Spelman
,
O.
Stephan
,
L.
Gredy
,
M.
Bouriau
,
E.
Lauga
, and
P.
Marmottant
, “
Propulsion of bubble-based acoustic microswimmers
,”
Phys. Rev. Appl.
4
,
064012
(
2015
).
14.
W.
Lauterborn
and
T.
Kurz
, “
Physics of bubble oscillations
,”
Rep. Prog. Phys.
73
,
106501
(
2010
).
15.
V. F. K.
Bjerknes
,
Fields of Force
(
Columbia University Press
,
New York
,
1906
).
16.
M.
Ida
, “
Phase properties and interaction force of acoustically interacting bubbles: A complementary study of the transition frequency
,”
Phys. Fluids
17
,
097107
(
2005
).
17.
E. A.
Zabolotskaya
, “
Interaction of gas bubbles in a sound field
,”
Sov. Phys. Acoust.
30
,
365
(
1984
).
18.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
On the mutual interaction of two gas bubbles in a sound field
,”
Phys. Fluid
7
,
1923
1930
(
1995
).
19.
N. A.
Pelekasis
,
A.
Gaki
,
A. A.
Doinikov
, and
J. A.
Tsamopoulos
, “
Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers
,”
J. Fluid Mech.
500
,
313
347
(
2004
).
20.
D. L.
Miller
, “
Stable arrays of resonant bubbles in a 1-mhz standing-wave acoustic field
,”
J. Acoust. Soc. Am.
62
,
12
(
1977
).
21.
D.
Rabaud
,
P.
Thibault
,
M.
Mathieu
, and
P.
Marmottant
, “
Acoustically bound microfluidic bubble crystals
,”
Phys. Rev. Lett.
106
(
13
),
134501
(
2011
).
22.
T.
Barbat
,
N.
Ashgriz
, and
C. S.
Liu
, “
Dynamics of two interacting bubbles in an acoustic field
,”
J. Fluid Mech.
389
,
137
(
1999
).
23.
G.
Regnault
,
A. A.
Doinikov
,
C.
Mauger
,
P.
Blanc-Benon
, and
C.
Inserra
, “
Dynamics of two interacting acoustic bubbles at short separation distances
,”
Phys. Fluids
35
,
037116
(
2023
).
24.
G.
Regnault
,
C.
Mauger
,
P.
Blanc-Benon
, and
C.
Inserra
, “
Secondary radiation force between two closely spaced acoustic bubbles
,”
Phys. Rev. E
102
,
031101
(
2020
).
25.
P. C.
Duineveld
, “
Bouncing and coalescence of bubble pairs rising at high reynolds number in pure water or aqueous surfactant solutions
,”
Appl. Sci. Res.
58
,
409
439
(
1997
).
26.
P. C.
Duineveld
, “
The influence of an applied sound field on bubble coalescence
,”
J. Acoust. Soc. Am.
99
(
1
),
622
624
(
1996
).
27.
H. N.
Oguz
and
A.
Prosperetti
, “
A generalization of the impulse and virial theorems with an application to bubble oscillations
,”
J. Fluid Mech.
218
,
143
(
1990
).
28.
A.
Harkin
,
T. J.
Kaper
, and
A.
Nadim
, “
Coupled pulsation and translation of two gas bubbles in a liquid
,”
J. Fluid Mech.
445
,
377
(
2001
).
29.
A. A.
Doinikov
, “
Translational motion of two interacting bubbles in a strong acoustic field
,”
Phys. Rev. E
64
,
026301
(
2001
).
30.
A. A.
Doinikov
and
A.
Bouakaz
, “
Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances
,”
Phys. Rev. E
92
,
043001
(
2015
).
31.
S. M.
van der Meer
,
B.
Dollet
,
M. M.
Voormolen
,
C. T.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
(
2007
).
32.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
Boca Raton
,
2011
).
33.
A. A.
Doinikov
, “
Acoustic radiation forces: Classical theory and recent advances
,” in
Recent Research Developments in Acoustics
(
Transworld Research Network
,
Trivandrum, Kerala, India
,
2003
), Vol. 1, pp.
39
67
.
34.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
1978
).
35.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
New Jersey
,
1962
).
36.
A. M.
Gaudin
,
Flotation
(
McGraw-Hill
,
New York
,
1957
).
37.
H.
Brauer
and
D.
Mewes
, “
Stromungswiderstand sowie stationarer und instationarer stoff- und warmeubergang an kugeln
,”
Chem.-Ing.-Techn.
44
,
865
(
1972
).
38.
R. W.
Jonson
,
The Handbook of Fluid Dynamics
(
CRC Press
,
Boca Raton
,
2016
).
39.
A. I.
Eller
and
L. A.
Crum
, “
Instability of the motion of a pulsating bubble in a sound field
,”
J. Acoust. Soc. Am.
47
,
762
767
(
1970
).
40.
G. C.
Maitland
,
Intermolecular Forces: Their Origin and Determination
(
Clarendon Press
,
Oxford, New York
,
1981
).
41.
P. L.
Marston
,
E. H.
Trinh
,
J.
Depew
,
T. J.
Asaki
et al, “
Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations
,” in
Bubble Dynamics and Interface Phenomena
, edited by
J. R.
Blake
(
Kluwer Academic
,
Dordrecht
,
1994
).
42.
U.
Parlitz
,
R.
Mettin
,
S.
Luther
,
I.
Akhatov
,
M.
Voss
, and
W.
Lauterborn
, “
Spatio-temporal dynamics of acoustic cavitation bubbles clouds
,”
Philos. Trans. R. Soc. Lond. A
357
,
313
334
(
1999
).
43.
J. G. S.
Moo
,
C. C.
Mayorga-Martinez
,
H.
Wang
,
W. Z.
Teo
,
B. H.
Tan
,
T. D.
Luong
,
S. R.
Gonzalez-Avila
,
C.-D.
Ohl
, and
M.
Pumera
, “
Bjerknes forces in motion: Long-range translational motion and chiral directionality switching in bubble-propelled micromotors via an ultrasonic pathway
,”
Adv. Funct. Mater.
28
,
1702618
(
2018
).
44.
A. A.
Doinikov
,
S.
Cleve
,
G.
Regnault
,
C.
Mauger
, and
C.
Inserra
, “
Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case 0 and m
,”
Phys. Rev. E
100
,
033104
(
2019
).
45.
A. A.
Doinikov
,
G.
Regnault
,
C.
Mauger
,
P.
Blanc-Benon
, and
C.
Inserra
, “
Acoustic microstreaming produced by two interacting gas bubbles undergoing axisymmetric shape oscillations
,”
J. Fluid Mech.
931
,
A19
(
2022
).
46.
G.
Regnault
,
C.
Mauger
,
P.
Blanc-Benon
,
A. A.
Doinikov
, and
C.
Inserra
, “
Signatures of microstreaming patterns induced by non-spherically oscillating bubbles
,”
J. Acoust. Soc. Am.
150
,
1188
1197
(
2021
).
47.
C.
Feuillade
, “
Scattering from collective modes of air bubbles in water and the physical mechanism of superresonances
,”
J. Acoust. Soc. Am.
98
(
2
),
1178
1190
(
1995
).
You do not currently have access to this content.