It has become urgent to formulate the physical vulnerability of pedestrians exposed to the compound hazard of strong wind and flooding in an urban landscape and identify the pedestrian risk characteristics within urban building arrays. In this study, the physical vulnerability of pedestrians subject to a joint effect of wind and floodwater is quantified theoretically based on a mechanical analysis in terms of floodwater velocity, depth and wind speed. Laboratory experiment regarding the instability of a dummy is performed to calibrate this vulnerability formula. The formula is adopted to quantify the pedestrian risk rating within different urban building array configurations in conjunction with computational fluid dynamics simulation, including the urban block layout, building form, and building array skyline. It is found that (i) the reverse wind reduces the area of the extreme instability risk zone of pedestrians but improves the safety zone area in comparison to the forward wind; (ii) in comparison to the determinant layout, the enclosed layout is indeed favorable to pedestrian safety; however, the staggered layout causes pedestrian safety to deteriorate; (iii) either corner modification or a change in building form leads to a large reduction in pedestrian risk; and (iv) For a parallel building skyline array, a low street aspect ratio (i.e., the ratio of building height to street width) yields an increased pedestrian risk when the aspect ratio is smaller than unity; however, a large aspect ratio produces an increased pedestrian risk when the aspect ratio exceeds unity. The protuberant skyline leads to more high-risk zones than the parallel skyline, while a concave skyline does not alter the risk distribution except for the last row of buildings. The ascending skyline configuration leads to a more complex and more uniform risk distribution pattern, while the descending skyline does not change the general risk distribution trend. These results might be referenced by engineers and managers to implement tailored measures (for example, optimizing urban array configurations) for mitigating and reducing pedestrian risk in urban regions.

1.
B.
Chen
,
F.
Shi
,
T.
Lin
,
P.
Shi
, and
J.
Zheng
, “
Intensive versus extensive events? Insights from cumulative flood-induced mortality over the globe, 1976–2016
,”
Int. J. Disaster Risk Sci.
11
(
4
),
441
451
(
2020
).
2.
P.
Hu
,
Q.
Zhang
,
P.
Shi
,
B.
Chen
, and
J.
Fang
, “
Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors
,”
Sci. Total Environ.
643
,
171
182
(
2018
).
3.
J.
Rentschler
,
M.
Salhab
, and
B. A.
Jafino
, “
Flood exposure and poverty in 188 countries
,”
Nat. Commun.
13
(
1
),
3527
(
2022
).
4.
Ministry of Emergency Management & Ministry of Education
,
Evaluation Report of Global Natural Hazard, Published by Academy of Disaster Reduction and Emergency Management
(
Ministry of Emergency Management & Ministry of Education
,
China
,
2021
).
5.
B.
Tellman
,
J. A.
Sullivan
,
C.
Kuhn
,
A. J.
Kettner
,
C. S.
Doyle
,
G. R.
Brakenridge
,
T. A.
Erickson
, and
D. A.
Slayback
, “
Satellite imaging reveals increased proportion of population exposed to floods
,”
Nature
596
(
7870
),
80
86
(
2021
).
6.
J.
Zhang
,
W.
Xu
,
X.
Liao
,
S.
Zong
, and
B.
Liu
, “
Global mortality risk assessment from river flooding under climate change
,”
Environ. Res. Lett.
16
(
6
),
064036
(
2021
).
7.
D.
Yu
,
J.
Yin
,
R. L.
Wilby
,
S. N.
Lane
,
J. C. J. H.
Aerts
,
N.
Lin
,
M.
Liu
,
H.
Yuan
,
J.
Chen
,
C.
Prudhomme
,
M.
Guan
,
A.
Baruch
,
C. W. D.
Johnson
,
X.
Tang
,
L.
Yu
, and
S.
Xu
, “
Disruption of emergency response to vulnerable populations during floods
,”
Nat. Sustainable
3
(
9
),
728
736
(
2020
).
8.
Q.
Li
,
J.
Xia
,
B.
Dong
, and
M.
Zhou
, “
Near-field flow dynamics of grate inlets during urban floods
,”
Phys. Fluids
34
,
087111
(
2022
).
9.
S.
Muis
,
B.
Güneralp
,
B.
Jongman
,
J. C. J. H.
Aerts
, and
P. J.
Ward
, “
Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data
,”
Sci. Total Environ.
538
,
445
457
(
2015
).
10.
F.
Dottori
,
W.
Szewczyk
,
J. C.
Ciscar
,
F.
Zhao
,
L.
Alfieri
,
Y.
Hirabayashi
,
A.
Bianchi
,
I.
Mongelli
,
K.
Frieler
,
R. A.
Betts
, and
L.
Feyen
, “
Increased human and economic losses from river flooding with anthropogenic warming
,”
Nat. Clim. Change
8
(
9
),
781
786
(
2018
).
11.
Y.
Li
,
W. H.
Zhou
, and
P.
Shen
, “
Pedestrian danger assessment under rainstorm-induced flood disaster for an artificial island
,”
Int. J. Disaster Risk Reduct.
78
,
103133
(
2022
).
12.
Z.
Zhu
,
L.
Gou
,
S.
Liu
, and
D.
Peng
, “
Effect of urban neighbourhood layout on the flood intrusion rate of residential buildings and associated risk for pedestrians
,”
Sustainable Cities Soc.
92
,
104485
(
2023
).
13.
H. R.
Moftakhari
,
G.
Salvadori
,
A.
AghaKouchak
,
B. F.
Sanders
, and
R. A.
Matthew
, “
Compounding effects of sea level rise and fluvial flooding
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
37
),
9785
9790
(
2017
).
14.
Y.
Shen
,
M. M.
Morsy
,
C.
Huxley
,
N.
Tahvildari
, and
J. L.
Goodall
, “
Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall
,”
J. Hydrol.
579
,
124159
(
2019
).
15.
J.
Fang
,
T.
Wahl
,
J.
Fang
,
X.
Sun
,
F.
Kong
, and
M.
Liu
, “
Compound flood potential from storm surge and heavy precipitation in coastal China: Dependence, drivers, and impacts
,”
Hydrol. Earth Syst. Sci.
25
(
8
),
4403
4416
(
2021
).
16.
R. J.
Nicholls
,
D.
Lincke
,
J.
Hinkel
,
S.
Brown
,
A. T.
Vafeidis
,
B.
Meyssignac
,
S. E.
Hanson
,
J. L.
Merkens
, and
J.
Fang
, “
Author Correction: A global analysis of subsidence, relative sea-level change and coastal flood exposure
,”
Nat. Clim. Change
11
(
7
),
634
(
2021
).
17.
J.
Fang
,
R. J.
Nicholls
,
S.
Brown
,
D.
Lincke
,
J.
Hinkel
,
A. T.
Vafeidis
,
S.
Du
,
Q.
Zhao
,
M.
Liu
, and
P.
Shi
, “
Benefits of subsidence control for coastal flooding in China
,”
Nat. Commun.
13
(
1
),
6946
(
2022
).
18.
Y.
Wang
and
R.
Marsooli
, “
Physical instability of individuals exposed to storm-induced coastal flooding: Vulnerability of New Yorkers during Hurricane Sandy
,”
Water Resour. Res.
57
(
1
),
e2020WR028616
, https://doi.org/10.1029/2020WR028616 (
2021
).
19.
H. M.
Lyu
,
W. H.
Zhou
,
S. L.
Shen
, and
A. N.
Zhou
, “
Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen
,”
Sustainable Cities Soc.
56
,
102103
(
2020
).
20.
G.
Musolino
,
R.
Ahmadian
,
J.
Xia
, and
R. A.
Falconer
, “
Mapping the danger to life in flash flood events adopting a mechanics based methodology and planning evacuation routes
,”
J. Flood Risk Manage.
13
(
4
),
e12627
(
2020
).
21.
E. C.
van Berchum
,
W.
Mobley
,
S. N.
Jonkman
,
J. S.
Timmermans
,
J. H.
Kwakkel
, and
S. D.
Brody
, “
Evaluation of flood risk reduction strategies through combinations of interventions
,”
J. Flood Risk Manage.
12
,
e12506
(
2019
).
22.
T. T.
Vu
and
R.
Ranzi
, “
Flood risk assessment and coping capacity of floods in central Vietnam
,”
J. Hydro-Environ. Res.
14
,
44
60
(
2017
).
23.
H.
Farahmand
,
S.
Dong
, and
A.
Mostafavi
, “
Network analysis and characterization of vulnerability in flood control infrastructure for system-level risk reduction
,”
Comput., Environ. Urban Syst.
89
,
101663
(
2021
).
24.
C.
Arrighi
,
M.
Pregnolato
,
R. J.
Dawson
, and
F.
Castelli
, “
Preparedness against mobility disruption by floods
,”
Sci. Total Environ.
654
,
1010
1022
(
2019
).
25.
G.
Bernardini
,
M.
Postacchini
,
E.
Quagliarini
,
M.
Brocchini
,
C.
Cianca
, and
M.
D'Orazio
, “
A preliminary combined simulation tool for the risk assessment of pedestrians' flood-induced evacuation
,”
Environ. Modell. Software
96
,
14
29
(
2017
).
26.
S. R.
Abt
,
R. J.
Wittier
,
A.
Taylor
, and
D. J.
Love
, “
Human stability in a high flood hazard zone
,”
J. Am. Water Resour. Assoc.
25
(
4
),
881
890
(
1989
).
27.
S. N.
Jonkman
and
E.
Penning-Rowsell
, “
Human instability in flood flows
,”
J. Am. Water Resour. Assoc.
44
(
5
),
1208
1218
(
2008
).
28.
H.
Chanson
and
R.
Brown
, “
New criterion for the stability of a human body in floodwaters
,”
J. Hydraul. Res.
53
(
4
),
540
542
(
2015
).
29.
E.
Martínez-Gomariz
,
M.
Gómez
, and
B.
Russo
, “
Experimental study of the stability of pedestrians exposed to urban pluvial flooding
,”
Nat. Hazards
82
(
2
),
1259
1278
(
2016
).
30.
J.
Xia
,
R. A.
Falconer
,
Y.
Wang
, and
X.
Xiao
, “
New criterion for the stability of a human body in floodwaters
,”
J. Hydraul. Res.
52
(
1
),
93
104
(
2014
).
31.
C.
Arrighi
,
H.
Oumeraci
, and
F.
Castelli
, “
Hydrodynamics of pedestrians' instability in floodwaters
,”
Hydrol. Earth Syst. Sci.
21
(
1
),
515
531
(
2017
).
32.
M.
Bruwier
,
C.
Maravat
,
A.
Mustafa
,
J.
Teller
,
M.
Pirotton
,
S.
Erpicum
,
P.
Archambeau
, and
B.
Dewals
, “
Influence of urban forms on surface flow in urban pluvial flooding
,”
J. Hydrol.
582
,
124493
(
2020
).
33.
R.
Löwe
,
C.
Urich
,
N.
Sto. Domingo
,
O.
Mark
,
A.
Deletic
, and
K.
Arnbjerg-Nielsen
, “
Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools
,”
J. Hydrol.
550
,
355
367
(
2017
).
34.
J.
Leandro
,
A.
Schumann
, and
A.
Pfister
, “
A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling
,”
J. Hydrol.
535
,
356
365
(
2016
).
35.
Z.
Huang
,
Y.
Zhang
,
Y.
Wen
,
Y.
Tang
,
C.
Liu
et al, “
Synoptic wind driven ventilation and far field radionuclides dispersion across urban block regions: Effects of street aspect ratios and building array skylines
,”
Sustainable Cities Soc.
78
,
103606
(
2022
).
36.
M.
Hadavi
and
H.
Pasdarshahri
, “
Quantifying impacts of wind speed and urban neighborhood layout on the infiltration rate of residential buildings
,”
Sustainable Cities Soc.
53
,
101887
(
2020
).
37.
W. H.
Snyder
, “
Similarity criteria for the application of fluid models to the study of air pollution meteorology
,”
Boundary-Layer Meteorol.
3
,
113
134
(
1972
).
38.
B. R.
Rosenzweig
,
P.
Herreros Cantis
,
Y.
Kim
,
A.
Cohn
,
K.
Grove
,
J.
Brock
,
J.
Yesuf
,
P.
Mistry
,
C.
Welty
,
T.
McPhearson
,
J.
Sauer
, and
H.
Chang
, “
The value of urban flood modeling
,”
Earth's Future
9
(
1
),
e2020EF001739
(
2021
).
39.
U. C.
Nkwunonwo
,
M.
Whitworth
, and
B.
Baily
, “
A review of the current status of flood modelling for urban flood risk management in the developing countries
,”
Sci. Afr.
7
,
e00269
(
2020
).
40.
R. B.
Mudashiru
,
N.
Sabtu
,
I.
Abustan
, and
W.
Balogun
, “
Flood hazard mapping methods: A review
,”
J. Hydrol.
603
,
126846
(
2021
).
41.
E.
Mignot
,
X.
Li
, and
B.
Dewals
, “
Experimental modelling of urban flooding: A review
,”
J. Hydrol.
568
,
334
342
(
2019
).
42.
W. F.
Jia
,
S. H.
Zhang
,
Y. F.
Yang
, and
Y. J.
Yi
, “
A laboratory investigation of the transport mechanism of floating fish eggs: A case study of Asian carps
,”
Aquaculture
519
,
734855
(
2020
).
43.
A.
Shu
,
J.
Qin
,
M.
Rubinato
,
T.
Sun
,
M.
Wang
,
S.
Wang
,
L.
Wang
,
J.
Zhu
, and
F.
Zhu
, “
An experimental investigation of turbulence features induced by typical artificial M-shaped unit reefs
,”
Appl. Sci.
11
(
4
),
1393
(
2021
).
44.
A.
Shu
,
M.
Rubinato
,
J.
Qin
,
J.
Zhu
,
T.
Sun
,
W.
Yang
,
M.
Wang
, and
Z.
Zhang
, “
The hydrodynamic characteristics induced by multiple layouts of typical artificial M-type reefs with sea currents typical of Liaodong Bay, Bohai Sea
,”
J. Mar. Sci. Eng.
9
(
11
),
1155
(
2021
).
45.
M.
Postacchini
,
G.
Bernardini
,
M.
D'Orazio
, and
E.
Quagliarini
, “
Human stability during floods: Experimental tests on a physical model simulating human body
,”
Saf. Sci.
137
,
105153
105112
(
2021
).
46.
Q.
Zhou
,
W.
Yu
,
A. S.
Chen
,
C.
Jiang
, and
G.
Fu
, “
Experimental assessment of building blockage effects in a simplified urban district
,”
Procedia Eng.
154
,
844
852
(
2016
).
47.
M. A.
Mejía-Morales
,
E.
Mignot
,
A.
Paquier
,
D.
Sigaud
, and
S.
Proust
, “
Impact of the porosity of an urban block on the flood risk assessment: A laboratory experiment
,”
J. Hydrol.
602
,
126715
(
2021
).
48.
V.
Heller
, “
Scale effects in physical hydraulic engineering models
,”
J. Hydraul. Res.
49
(
3
),
293
306
(
2011
).
49.
Y.
Toparlar
,
B.
Blocken
,
B.
Maiheu
, and
G. J. F.
Van Heijst
, “
A review on the CFD analysis of urban microclimate
,”
Renewable Sustainable Energy Rev.
80
,
1613
1640
(
2017
).
50.
C.
Biscarini
,
S.
Di Francesco
, and
P.
Manciola
, “
CFD modelling approach for dam break flow studies
,”
Hydrol. Earth Syst. Sci.
14
(
4
),
705
718
(
2010
).
51.
J.
Franke
,
C.
Hirsch
,
G.
Jensen
,
H. W.
Krüs
,
S. D.
Miles
,
M.
Schatzmann
,
P. S.
Westbury
,
J. A.
Wisse
, and
N.
Wright
, “
Recommendations on the use of CFD in wind engineering
,” in Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics, 2004 (pp. C.1.1–C1.11).
52.
B.
Blocken
,
T.
Stathopoulos
, and
J. P. A. J.
van Beeck
, “
Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment
,”
Build. Environ.
100
,
50
81
(
2016
).
53.
N.
Koutsourakis
,
J. G.
Bartzis
, and
N. C.
Markatos
, “
Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets
,”
Environ. Fluid Mech.
12
(
4
),
379
403
(
2012
).
54.
K. M. T.
Kleefsman
,
G.
Fekken
,
A. E. P.
Veldman
,
B.
Iwanowski
, and
B.
Buchner
, “
A Volume-of-Fluid based simulation method for wave impact problems
,”
J. Comput. Phys.
206
(
1
),
363
393
(
2005
).
55.
T.
Fondelli
,
A.
Andreini
, and
B.
Facchini
, “
Numerical simulation of dam-break problem using an adaptive meshing approach
,”
Energy Procedia
82
,
309
315
(
2015
).
56.
L.
Peng
,
T.
Zhang
,
Y.
Rong
,
C.
Hu
, and
P.
Feng
, “
Numerical investigation of the impact of a dam-break induced flood on a structure
,”
Ocean Eng.
223
,
108669
(
2021
).
57.
S.
Soares-Frazão
and
Y.
Zech
, “
Dam-break flow through an idealised city
,”
J. Hydraul. Res.
46
(
5
),
648
658
(
2008
).
58.
C.
Biscarini
,
S.
Di Francesco
,
F.
Nardi
, and
P.
Manciola
, “
Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods
,”
Math. Probl. Eng.
2013
,
928309
.
59.
G.
Varra
,
R. D.
Morte
,
L.
Cimorelli
, and
L.
Cozzolino
, “
Coping with geometric discontinuities in porosity-based shallow water models
,”
Phys. Fluids
35
,
106612
(
2023
).
60.
Y.
Tominaga
,
A.
Mochida
,
R.
Yoshie
,
H.
Kataoka
,
T.
Nozu
,
M.
Yoshikawa
, and
T.
Shirasawa
, “
AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
,”
J. Wind Eng. Ind. Aerodyn.
96
(
10–11
),
1749
1761
(
2008
).
61.
R.
Yoshie
,
A.
Mochida
,
Y.
Tominaga
,
H.
Kataoka
,
K.
Harimoto
,
T.
Nozu
, and
T.
Shirasawa
, “
Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan
,”
J. Wind Eng. Ind. Aerodyn.
95
(
9–11
),
1551
1578
(
2007
).
62.
P. J.
Richards
and
S. E.
Norris
, “
Appropriate boundary conditions for computational wind engineering models revisited
,”
J. Wind Eng. Ind. Aerodyn.
99
(
4
),
257
266
(
2011
).
63.
P.
Mouzourides
,
C.
Marakkos
, and
M. K. A.
Neophytou
, “
Urban street canyon flows under combined wind forcing and thermal buoyancy
,”
Phys. Fluids
34
,
076606
(
2022
).
64.
W. R.
Oaks
,
S.
Kang
,
X.
Yang
, and
A.
Khosronejad
, “
Lagrangian dynamics of contaminant particles released from a point source in New York City
,”
Phys. Fluids
34
,
073303
(
2022
).
65.
Y.
Bazilevs
,
M. C.
Hsu
,
J.
Kiendl
,
R.
Wüchner
, and
K. U.
Bletzinger
, “
3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades
,”
Int. J. Numer. Methods Fluids
65
,
236
253
(
2011
).
66.
L.
Cea
,
M.
Garrido
, and
J.
Puertas
, “
Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas
,”
J. Hydrol.
382
(
1–4
),
88
102
(
2010
).
67.
H.
Tanaka
,
Y.
Tamura
,
K.
Ohtake
,
M.
Nakai
, and
Y.
Chul Kim
, “
Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations
,”
J. Wind Eng. Ind. Aerodyn.
107–108
,
179
191
(
2012
).
68.
X.
Xu
,
Q.
Yang
,
A.
Yoshida
, and
Y.
Tamura
, “
Characteristics of pedestrian-level wind around super-tall buildings with various configurations
,”
J. Wind Eng. Ind. Aerodyn.
166
,
61
73
(
2017
).
69.
S.
Agrawal
,
J. K.
Wong
,
J.
Song
,
O.
Mercan
, and
P. J.
Kushner
, “
Assessment of the aerodynamic performance of unconventional building shapes using 3D steady RANS with SST k-ω turbulence model
,”
J. Wind Eng. Ind. Aerodyn.
225
,
104988
(
2022
).
70.
X.
Li
,
S.
Erpicum
,
E.
Mignot
,
P.
Archambeau
,
M.
Pirotton
, and
B.
Dewals
, “
Influence of urban forms on long-duration urban flooding: Laboratory experiments and computational analysis
,”
J. Hydrol.
603
,
127034
(
2021
).
71.
B.
Hong
and
B.
Lin
, “
Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement
,”
Renewable Energy
73
,
18
27
(
2015
).
72.
E.
Mignot
,
L.
Camusson
, and
N.
Riviere
, “
Measuring the flow intrusion towards building areas during urban floods: Impact of the obstacles located in the streets and on the facade
,”
J. Hydrol.
583
,
124607
(
2020
).
73.
M.
Heidarinejad
,
M.
Dahlhausen
,
S.
McMahon
,
C.
Pyke
, and
J.
Srebric
, “
Cluster analysis of simulated energy use for LEED certified U.S. office buildings
,”
Energy Build.
85
,
86
97
(
2014
).
74.
G. P.
Smith
,
P. F.
Rahman
, and
C.
Wasko
, “
A comprehensive urban floodplain dataset for model benchmarking
,”
Int. J. River Basin Manage.
14
(
3
),
345
356
(
2016
).
75.
Z. T.
Ai
and
C. M.
Mak
, “
CFD simulation of flow and dispersion around an isolated building: Effect of inhomogeneous ABL and near-wall treatment
,”
Atmos. Environ.
77
,
568
578
(
2013
).
76.
B.
Blocken
, “
Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations
,”
Build. Environ.
91
,
219
245
(
2015
).
77.
M.
Hadavi
and
H.
Pasdarshahri
, “
Investigating effects of urban configuration and density on urban climate and building systems energy consumption
,”
J. Build. Eng.
44
,
102710
(
2021
).
78.
H.
Mittal
,
A.
Sharma
, and
A.
Gairola
, “
Numerical simulation of pedestrian level wind flow around buildings: Effect of corner modification and orientation
,”
J. Build. Eng.
22
,
314
326
(
2019
).
79.
J.
Ning
,
Z.
Jin
, and
X.
Xu
, “
A multigrid partition coupled Eulerian–Lagrangian method for fluid–solid interaction problems
,”
Phys. Fluids
35
,
097134
(
2023
).
80.
M. S.
Güney
,
G.
Tayfur
,
G.
Bombar
, and
S.
Elci
, “
Distorted physical model to study sudden partial dam break flows in an urban area
,”
J. Hydraul. Eng.
140
(
11
),
05014006
(
2014
).
81.
X.
Li
,
S.
Erpicum
,
E.
Mignot
,
P.
Archambeau
,
N.
Rivière
,
M.
Pirotton
, and
B.
Dewals
, “
Numerical insights into the effects of model geometric distortion in laboratory experiments of urban flooding
,”
Water Resour. Res.
56
(
7
),
e2019WR026774
, https://doi.org/10.1029/2019WR026774 (
2020
).
82.
X.
Li
,
V.
Kitsikoudis
,
E.
Mignot
,
P.
Archambeau
,
M.
Pirotton
,
B.
Dewals
, and
S.
Erpicum
, “
Experimental and numerical study of the effect of model geometric distortion on laboratory modeling of urban flooding
,”
Water Resour. Res.
57
(
10
),
e2021WR029666
, https://doi.org/10.1029/2021WR029666 (
2021
).
83.
D.
Kvočka
,
R. A.
Falconer
, and
M.
Bray
, “
Flood hazard assessment for extreme flood events
,”
Nat. Hazards
84
(
3
),
1569
1599
(
2016
).
84.
B.
Dong
,
J.
Xia
,
M.
Zhou
,
Q.
Li
,
R.
Ahmadian
, and
R. A.
Falconer
, “
Integrated modeling of 2D urban surface and 1D sewer hydrodynamic processes and flood risk assessment of people and vehicles
,”
Sci. Total Environ.
827
,
154098
(
2022
).
85.
G.
Musolino
,
R.
Ahmadian
, and
R. A.
Falconer
, “
Comparison of flood hazard assessment criteria for pedestrians with a refined mechanics-based method
,”
J. Hydrol. X
9
,
100067
(
2020
).
86.
Z.
Li
,
T.
Ming
,
S.
Liu
,
C.
Peng
,
R.
de Richter
,
W.
Li
,
H.
Zhang
, and
C. Y.
Wen
, “
Review on pollutant dispersion in urban areas-part A: Effects of mechanical factors and urban morphology
,”
Build. Environ.
190
,
107534
(
2021
).
87.
M. S.
Thordal
,
J. C.
Bennetsen
,
S.
Capra
,
A. K.
Kragh
, and
H. H. H.
Koss
, “
Towards a standard CFD setup for wind load assessment of high-rise buildings: Part 2—Blind test of chamfered and rounded corner high-rise buildings
,”
J. Wind Eng. Ind. Aerodyn.
205
,
104282
(
2020
).
88.
Y.
Tamura
,
X.
Xu
, and
Q.
Yang
, “
Characteristics of pedestrian-level Mean wind speed around square buildings: Effects of height, width, size and approaching flow profile
,”
J. Wind Eng. Ind. Aerodyn.
192
,
74
87
(
2019
).
89.
G. W.
Alminhana
,
A. L.
Braun
, and
A. M.
Loredo-Souza
, “
A numerical-experimental investigation on the aerodynamic performance of CAARC building models with geometric modifications
,”
J. Wind Eng. Ind. Aerodyn.
180
,
34
48
(
2018
).
90.
Y.
Tominaga
and
M.
Shirzadi
, “
Wind tunnel measurement of three-dimensional turbulent flow structures around a building group: Impact of high-rise buildings on pedestrian wind environment
,”
Build. Environ.
206
,
108389
(
2021
).
91.
Y.
Du
,
C. M.
Mak
, and
B. S.
Tang
, “
Effects of building height and porosity on pedestrian level wind comfort in a high-density urban built environment
,”
Build. Simul.
11
(
6
),
1215
1228
(
2018
).
92.
C.
Xi
,
C.
Ren
,
J.
Wang
,
Z.
Feng
, and
S. J.
Cao
, “
Impacts of urban-scale building height diversity on urban climates: A case study of Nanjing, China
,”
Energy Build.
251
,
111350
(
2021
).
93.
J.
Hang
,
Y.
Li
,
M.
Sandberg
,
R.
Buccolieri
, and
S.
Di Sabatino
, “
The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas
,”
Build. Environ.
56
,
346
360
(
2012
).
94.
M.
Bruwier
,
A.
Mustafa
,
D. G.
Aliaga
,
P.
Archambeau
,
S.
Erpicum
,
G.
Nishida
,
X.
Zhang
,
M.
Pirotton
,
J.
Teller
, and
B.
Dewals
, “
Influence of urban pattern on inundation flow in floodplains of lowland rivers
,”
Sci. Total Environ.
622–623
,
446
458
(
2018
).
95.
S.
Zhang
,
K. C. S.
Kwok
,
H.
Liu
,
Y.
Jiang
,
K.
Dong
, and
B.
Wang
, “
A CFD study of wind assessment in urban topology with complex wind flow
,”
Sustainable Cities Soc.
71
,
103006
(
2021
).
96.
H.
Wang
,
C.
Peng
,
W.
Li
,
C.
Ding
,
T.
Ming
, and
N.
Zhou
, “
Porous media: A faster numerical simulation method applicable to real urban communities
,”
Urban Clim.
38
,
100865
(
2021
).
97.
G.
Bernardini
,
G.
Romano
,
L.
Soldini
, and
E.
Quagliarini
, “
How urban layout and pedestrian evacuation behaviours can influence flood risk assessment in riverine historic built environments
,”
Sustainable Cities Soc.
70
,
102876
(
2021
).
98.
E.
Quagliarini
,
G.
Bernardini
,
G.
Romano
, and
M.
D'Orazio
, “
Simplified flood evacuation simulation in outdoor built environments. Preliminary comparison between setup-based generic software and custom simulator
,”
Sustainable Cities Soc.
81
,
103848
(
2022
).
99.
D.
Coles
,
D.
Yu
,
R. L.
Wilby
,
D.
Green
, and
Z.
Herring
, “
Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK
,”
J. Hydrol.
546
,
419
436
(
2017
).

Supplementary Material

You do not currently have access to this content.