Longitudinal waves propagate information about the stimulus in multiple dimensions, including the medium density and pressure. Pulses that reversibly cross a phase transition have a nonlinear response that resembles properties of neuronal signaling. This multidimensionality suggests that longitudinal pulses may be harnessed for in-materio computation, mimicking biological or artificial neural algorithms. To explore a feedforward physical neural network using longitudinal pulses, we demonstrate the implementation of (1) a complete set of logic gates, (2) classification of data, and (3) regression of a mathematical function. Our results illustrate the potential of harnessing nonlinear longitudinal waves—common in a plethora of materials—for the purpose of computation.

1.
H.
Paugam-Moisy
and
S. M.
Bohte
, “
Computing with spiking neuron networks
,” in
Handbook of Natural Computing
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
335
376
.
2.
B.
Yegnanarayana
,
Artificial Neural Networks
(
PHI Learning Pvt. Ltd
.,
2009
).
3.
L. F. W.
Anthony
,
B.
Kanding
, and
R.
Selvan
, “
Carbontracker: Tracking and predicting the carbon footprint of training deep learning models
,” arXiv:2007.03051 (
2020
).
4.
V.
Balasubramanian
, “
Brain power
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2107022118
(
2021
).
5.
S.
Stepney
, “
The neglected pillar of material computation
,”
Phys. D: Nonlinear Phenom.
237
,
1157
(
2008
).
6.
M.
Dale
,
J. F.
Miller
, and
S.
Stepney
,
Reservoir Computing as a Model for In-Materio Computing
(
Springer
,
Cham
,
2017
), pp.
533
571
.
7.
N. R.
Shanbhag
,
S.
Mitra
,
G.
de Veciana
,
M.
Orshansky
,
R.
Marculescu
,
J.
Roychowdhury
,
D.
Jones
, and
J. M.
Rabaey
, “
The search for alternative computational paradigms
,”
IEEE Des. Test Comput.
25
,
334
(
2008
).
8.
C. D.
Schuman
,
T. E.
Potok
,
R. M.
Patton
,
J. D.
Birdwell
,
M. E.
Dean
,
G. S.
Rose
, and
J. S.
Plank
, “
A survey of neuromorphic computing and neural networks in hardware
,” arXiv:1705.06963 (
2017
).
9.
F.
Hadaeghi
,
X.
He
, and
H.
Jaeger
, “
Unconventional information processing systems, novel hardware: A tour d'horizon
,”
Technical Report No. 36
(
2017
).
10.
M. D.
Pickett
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
A scalable neuristor built with mott memristors
,”
Nat. Mater.
12
,
114
(
2013
).
11.
T.
Tuma
,
A.
Pantazi
,
M. L.
Gallo
,
A.
Sebastian
, and
E.
Eleftheriou
, “
Stochastic phase-change neurons
,”
Nat. Nanotechnol.
11
,
693
(
2016
).
12.
Z.
Wang
,
S.
Joshi
,
S.
Savel'Ev
,
W.
Song
,
R.
Midya
,
Y.
Li
,
M.
Rao
,
P.
Yan
,
S.
Asapu
,
Y.
Zhuo
et al, “
Fully memristive neural networks for pattern classification with unsupervised learning
,”
Nat. Electron.
1
,
137
(
2018
).
13.
V. K.
Sangwan
and
M. C.
Hersam
, “
Neuromorphic nanoelectronic materials
,”
Nat. Nanotechnol.
15
,
517
(
2020
).
14.
K.
Liu
,
B.
Dang
,
T.
Zhang
,
Z.
Yang
,
L.
Bao
,
L.
Xu
,
C.
Cheng
,
R.
Huang
, and
Y.
Yang
, “
Multilayer reservoir computing based on ferroelectric α-in2se3 for hierarchical information processing
,”
Adv. Mater.
34
,
2108826
(
2022
).
15.
J.
Grollier
,
D.
Querlioz
,
K. Y.
Camsari
,
K.
Everschor-Sitte
,
S.
Fukami
, and
M. D.
Stiles
, “
Neuromorphic spintronics
,”
Nat. Electron.
3
,
360
(
2020
).
16.
O.
Lee
,
T.
Wei
,
K. D.
Stenning
,
J. C.
Gartside
,
D.
Prestwood
,
S.
Seki
,
A.
Aqeel
,
K.
Karube
,
N.
Kanazawa
,
Y.
Taguchi
et al, “
Task-adaptive physical reservoir computing
,”
Nat. Mater.
23
,
79
(
2023
).
17.
D.
Pierangeli
,
G.
Marcucci
, and
C.
Conti
, “
Large-scale photonic Ising machine by spatial light modulation
,”
Phys. Rev. Lett.
122
,
213902
(
2019
).
18.
K.
Sozos
,
A.
Bogris
,
P.
Bienstman
,
G.
Sarantoglou
,
S.
Deligiannidis
, and
C.
Mesaritakis
, “
High-speed photonic neuromorphic computing using recurrent optical spectrum slicing neural networks
,”
Commun. Eng.
1
,
24
(
2022
).
19.
C.
Zhang
,
P. R.
Pudasaini
,
A. D.
Oyedele
,
A. V.
Ievlev
,
L.
Xu
,
A. V.
Haglund
,
J. H.
Noh
,
A. T.
Wong
,
K.
Xiao
,
T. Z.
Ward
et al, “
Ion migration studies in exfoliated 2D molybdenum oxide via ionic liquid gating for neuromorphic device applications
,”
ACS Appl. Mater. Interfaces
10
,
22623
(
2018
).
20.
M. U.
Khan
,
Q. M.
Saqib
,
M. Y.
Chougale
,
R. A.
Shaukat
,
J.
Kim
, and
J.
Bae
, “
Soft and flexible: Core-shell ionic liquid resistive memory for electronic synapses
,”
Microsyst. Nanoeng.
7
,
78
(
2021
).
21.
C.
Fernando
and
S.
Sojakka
,
Pattern Recognition in a Bucket
(
Springer Verlag
,
2003
), pp.
588
597
.
22.
I. S.
Maksymov
and
A.
Pototsky
, “
Reservoir computing based on solitary-like waves dynamics of liquid film flows: A proof of concept
,”
Europhys. Lett.
142
,
43001
(
2023
).
23.
M.
Mussel
and
M. F.
Schneider
, “
Similarities between action potentials and acoustic pulses in a van der Waals fluid
,”
Sci. Rep.
9
,
2467
(
2019
).
24.
C.
Kittel
and
H.
Kroemer
,
Thermal Physics
(
American Association of Physics Teachers
,
1998
).
25.
S.
Shrivastava
and
M. F.
Schneider
, “
Evidence for 2D solitary sound waves in a lipid controlled interface and its implications for biological signaling
,”
J. R. Soc. Interface
11
,
20140098
(
2014
).
26.
S.
Shrivastava
,
K. H.
Kang
, and
M. F.
Schneider
, “
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves
,”
Phys. Rev. E
91
(
1
),
012715
(
2015
).
27.
S.
Shrivastava
,
K. H.
Kang
, and
M. F.
Schneider
, “
Collision and annihilation of nonlinear sound waves and action potentials in interfaces
,”
J. R. Soc. Interface
15
,
20170803
(
2018
).
28.
O.
Albrecht
,
H.
Gruler
, and
E.
Sackmann
, “
Polymorphism of phospholipid monolayers
,”
J. Phys.
39
,
301
(
1978
).
29.
M. S.
Dimitriyev
,
Y.-W.
Chang
,
P. M.
Goldbart
, and
A.
Fernández-Nieves
, “
Swelling thermodynamics and phase transitions of polymer gels
,”
Nano Futures
3
,
042001
(
2019
).
30.
S. G.
Konarski
,
M. R.
Haberman
, and
M. F.
Hamilton
, “
Acoustic response for nonlinear, coupled multiscale model containing subwavelength designed microstructure instabilities
,”
Phys. Rev. E
101
,
022215
(
2020
).
31.
G.
Marcucci
,
D.
Pierangeli
, and
C.
Conti
, “
Theory of neuromorphic computing by waves: Machine learning by rogue waves, dispersive shocks, and solitons
,”
Phys. Rev. Lett.
125
,
93901
(
2020
).
32.
S.
Ma
,
T. M.
Antonsen
,
S. M.
Anlage
, and
E.
Ott
, “
Short-wavelength reverberant wave systems for physical realization of reservoir computing
,”
Phys. Rev. Res.
4
,
023167
(
2022
).
33.
R.
Cardona
,
E.
Miranda
,
D.
Peralta-Salas
, and
F.
Presas
, “
Constructing Turing complete Euler flows in dimension 3
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2026818118
(
2021
).
34.
A.
Adamatzky
,
Collision-Based Computing
(
Springer Science & Business Media
,
2012
).
35.
N. A.
Silva
,
T. D.
Ferreira
, and
A.
Guerreiro
, “
Reservoir computing with solitons
,”
New J. Phys.
23
,
023013
(
2021
).
36.
E. M.
Izhikevich
and
F. C.
Hoppensteadt
, “
Polychronous wavefront computations
,”
Int. J. Bifurcation Chaos
19
,
1733
(
2009
).
37.
L. G.
Wright
,
T.
Onodera
,
M. M.
Stein
,
T.
Wang
,
D. T.
Schachter
,
Z.
Hu
, and
P. L.
McMahon
, “
Deep physical neural networks trained with backpropagation
,”
Nature
601
,
7894
(
2022
).
38.
D.
Pierangeli
,
G.
Marcucci
, and
C.
Conti
, “
Photonic extreme learning machine by free-space optical propagation
,”
Photonics Res.
9
,
1446
(
2021
).
39.
G.
Marcucci
,
P.
Caramazza
,
S.
Shrivastava
, and
A. P.
Lett
, “
A new paradigm of reservoir computing exploiting hydrodynamics
,”
Phys. Fluids
35
,
071703
(
2023
).
40.
A.
Pierro
,
K.
Heiney
,
S.
Shrivastava
,
G.
Marcucci
, and
S.
Nichele
, “
Optimization of a hydrodynamic computational reservoir through evolution
,” in
GECCO '23: Proceedings of the 2023 Genetic and Evolutionary Computation Conference
(
ACM
,
2023
), pp.
202
210
.
41.
I. S.
Maksymov
, “
Analogue and physical reservoir computing using water waves: Applications in power engineering and beyond
,”
Energies
16
,
5366
(
2023
).
42.
M.
Mussel
and
M. F.
Schneider
, “
It sounds like an action potential: On the electrical and pH aspects of acoustic pulses in lipids
,”
J. R. Soc. Interface
16
,
20180743
(
2019
).
43.
M.
Mussel
, “
Information propagated by longitudinal pulses near a van der Waals phase transition
,”
Phys. Rev. E
108
,
034209
(
2023
).
44.
K.
Nakajima
, “
Physical reservoir computing—An introductory perspective
,”
Jpn. J. Appl. Phys.
59
,
060501
(
2020
).
45.
G. B.
Huang
,
Q. Y.
Zhu
, and
C. K.
Siew
, “
Extreme learning machine: Theory and applications
,”
Neurocomputing
70
,
489
(
2006
).
46.
A. N.
Gorban
and
I. V.
Karlin
, “
Beyond Navier–Stokes equations: Capillarity of ideal gas
,”
Contemp. Phys.
58
,
70
(
2017
).
47.
M.
Slemrod
, “
Dynamic phase transitions in a van der Waals fluid
,”
J. Differential Equations
52
,
1
(
1984
).
48.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
, Vol.
21
(
Wiley-Interscience
,
New York
,
1948
).
49.
D. C.
Johnston
,
Advances in Thermodynamics of the Van Der Waals Fluid
(
Morgan & Claypool Publishers
,
2014
).
50.
K. J.
Burns
,
G. M.
Vasil
,
J. S.
Oishi
,
D.
Lecoanet
, and
B. P.
Brown
, “
Dedalus: A flexible framework for numerical simulations with spectral methods
,”
Phys. Rev. Res.
2
,
023068
(
2020
).
51.
K.
Nakai
, “
Yeast data set
,” (
1996
), https://archive.ics.uci.edu/ml/datasets/yeast.
52.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
Imagenet classification with deep convolutional neural networks
,”
Commun. ACM
60
,
84
(
2017
).
53.
O.
Shriki
,
H.
Sompolinsky
, and
D. D.
Lee
, “
An information maximization approach to overcomplete and recurrent representations
,”
Adv. Neural Inf. Process. Syst.
13
,
612
618
(
2000
).
54.
J.
O'Byrne
and
K.
Jerbi
, “
How critical is brain criticality?
,”
Trends Neurosci.
45
,
820
(
2022
).
55.
N.
Srinivasa
,
N. D.
Stepp
, and
J.
Cruz-Albrecht
, “
Criticality as a set-point for adaptive behavior in neuromorphic hardware
,”
Front. Neurosci.
9
,
165046
(
2015
).
56.
T.
Tao
, “
Finite time blowup for an averaged three-dimensional Navier-Stokes equation
,”
J. Am. Math. Soc.
29
,
601
(
2015
).
57.
D.
Ding
and
J.
Bostwick
, “
Pressure modes of the oscillating sessile drop
,”
J. Fluid Mech.
944
,
R1
(
2022
).

Supplementary Material

You do not currently have access to this content.