This study introduces an immersed boundary (IB) method based on coefficient array transformations of discrete equations for local cells and local flow pattern reconstruction, for the simulation of turbulent flow and combustion chemistry inside combustors with complex structure. This IB method is combined with a geometric scanning algorithm that traverses each fluid grid point in the vicinity of the wall, and based on the exact wall positions and normal vectors obtained from the scanning, the coefficient matrices of the individual grid points and their discrete forms of the governing equations are transformed, and the boundary conditions are added implicitly and exactly. The effectiveness of the method is validated through simulations of a cylinder, a gas turbine model combustor [Meier et al., “Spray and flame structure of a generic injector at aeroengine conditions,” in Proceedings of the ASME 2011 Turbo Expo: Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2011), pp. 61–72 and Freitag et al., “Measurement of initial conditions of a kerosene spray from a generic aeroengine injector at elevated pressure,” Atomization Sprays 21, 521 (2011)], and a specific aero-engine combustor, demonstrating precision comparable to traditional body-fitted mesh approaches, especially for complex combustor structures. The simulation demonstrates that the IB method achieves accuracy comparable to a fitted grid when it provides boundary information of similar quality and detail for control equations. The locally reconstructed IB method introduced in this paper successfully delivers high-precision boundary conditions, making it valuable for practical engineering applications.

1.
U.
Meier
,
J.
Heinze
,
S.
Freitag
, and
C.
Hassa
, “
Spray and flame structure of a generic injector at aeroengine conditions
,” in
Proceedings of the ASME 2011 Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2011
), pp.
61
72
.
2.
S.
Freitag
,
U.
Meier
,
J.
Heinze
,
T.
Behrendt
, and
C.
Hassa
, “
Measurement of initial conditions of a kerosene spray from a generic aeroengine injector at elevated pressure
,”
Atomization Sprays
21
,
521
(
2011
).
3.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
(
2005
).
4.
R.
Verzicco
, “
Immersed boundary methods: Historical perspective and future outlook
,”
Annu. Rev. Fluid Mech.
55
,
129
(
2023
).
5.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
(
1972
).
6.
S. K.
Kang
and
Y. A.
Hassan
, “
A comparative study of direct‐forcing immersed boundary‐lattice Boltzmann methods for stationary complex boundaries
,”
Int. J. Numer. Methods Fluids
66
,
1132
(
2011
).
7.
C.
Liu
and
C.
Hu
, “
An efficient immersed boundary treatment for complex moving object
,”
J. Comput. Phys.
274
,
654
(
2014
).
8.
M.
Kumar
,
S.
Roy
, and
M. S.
Ali
, “
An efficient immersed boundary algorithm for simulation of flows in curved and moving geometries
,”
Comput. Fluids
129
,
159
(
2016
).
9.
J. R.
Nezhad
and
S. A.
Mirbozorgi
, “
An immersed boundary-lattice Boltzmann method to simulate chaotic micromixers with baffles
,”
Comput. Fluids
167
,
206
(
2018
).
10.
X.
Wang
,
X.
Gong
,
K.
Sugiyama
,
S.
Takagi
, and
H.
Huang
, “
An immersed boundary method for mass transfer through porous biomembranes under large deformations
,”
J. Comput. Phys.
413
,
109444
(
2020
).
11.
X.
Sun
and
M.
Sakai
, “
Numerical simulation of two-phase flows in complex geometries by using the volume-of-fluid/immersed-boundary method
,”
Chem. Eng. Sci.
139
,
221
(
2016
).
12.
B.
Blais
,
M.
Lassaigne
,
C.
Goniva
,
L.
Fradette
, and
F.
Bertrand
, “
A semi-implicit immersed boundary method and its application to viscous mixing
,”
Comput. Chem. Eng.
85
,
136
(
2016
).
13.
L.
Wang
,
G. M.
Currao
,
F.
Han
,
A. J.
Neely
,
J.
Young
, and
F.-B.
Tian
, “
An immersed boundary method for fluid–structure interaction with compressible multiphase flows
,”
J. Comput. Phys.
346
,
131
(
2017
).
14.
B.
Vadala-Roth
,
S.
Acharya
,
N. A.
Patankar
,
S.
Rossi
, and
B. E.
Griffith
, “
Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity
,”
Comput. Methods Appl. Mech. Eng.
365
,
112978
(
2020
).
15.
Y.
Zhang
,
G.
Pan
,
Y.
Zhang
, and
S.
Haeri
, “
A relaxed multi-direct-forcing immersed boundary-cascaded lattice Boltzmann method accelerated on GPU
,”
Comput. Phys. Commun.
248
,
106980
(
2020
).
16.
B. E.
Griffith
and
N. A.
Patankar
, “
Immersed Methods for Fluid–Structure Interaction
,”
Annu. Rev. Fluid Mech.
52
,
421
(
2020
).
17.
J.
Mohd-Yusof
, “
Development of immersed boundary methods for complex geometries
,”
Annu. Res. Briefs
1998
,
325
.
18.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
, “
A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
,”
J. Comput. Phys.
152
,
457
(
1999
).
19.
A.
Gilmanov
,
F.
Sotiropoulos
, and
E.
Balaras
, “
A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids
,”
J. Comput. Phys.
191
,
660
(
2003
).
20.
H.
Kor
,
M. B.
Ghomizad
, and
K.
Fukagata
, “
A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries
,”
J. Fluid Sci. Technol.
12
,
JFST0011
(
2017
).
21.
J.
Nam
and
F.
Lien
, “
A ghost-cell immersed boundary method for large-eddy simulations of compressible turbulent flows
,”
Int. J. Comput. Fluid Dyn.
28
,
41
(
2014
).
22.
T.
Ye
,
R.
Mittal
,
H.
Udaykumar
, and
W.
Shyy
, “
An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries
,”
J. Comput. Phys.
156
,
209
(
1999
).
23.
S.
Majumdar
,
G.
Iaccarino
,
P.
Durbin
et al, “
RANS solvers with adaptive structured boundary non-conforming grids
,”
Annu. Res. Briefs
1
,
179
(
2001
).
24.
H.
Udaykumar
,
R.
Mittal
,
P.
Rampunggoon
, and
A.
Khanna
, “
A sharp interface Cartesian grid method for simulating flows with complex moving boundaries
,”
J. Comput. Phys.
174
,
345
(
2001
).
25.
J.-D.
Lee
,
Development of an Efficient Viscous Approach in a Cartesian Grid Framework and Application to Rotor-Fuselage Interaction
(
Georgia Institute of Technology
,
2006
).
26.
S.
Tan
and
C.-W.
Shu
, “
Inverse Lax–Wendroff procedure for numerical boundary conditions of conservation laws
,”
J. Comput. Phys.
229
,
8144
(
2010
).
27.
S.
Tan
,
C.
Wang
,
C.-W.
Shu
, and
J.
Ning
, “
Efficient implementation of high order inverse Lax–Wendroff boundary treatment for conservation laws
,”
J. Comput. Phys.
231
,
2510
(
2012
).
28.
L.
Huang
,
C.-W.
Shu
, and
M.
Zhang
, “
Numerical boundary conditions for the fast sweeping high order WENO methods for solving the Eikonal equation
,”
J. Comput. Math.
26
,
336
(
2008
).
29.
T.
Xiong
,
M.
Zhang
,
Y.-T.
Zhang
, and
C.-W.
Shu
, “
Fast sweeping fifth order WENO scheme for static Hamilton–Jacobi equations with accurate boundary treatment
,”
J. Sci. Comput.
45
,
514
(
2010
).
30.
S.
Clain
,
D.
Lopes
, and
R. M.
Pereira
, “
Very high-order Cartesian-grid finite difference method on arbitrary geometries
,”
J. Comput. Phys.
434
,
110217
(
2021
).
31.
D.
Appelo
and
N. A.
Petersson
, “
A fourth-order accurate embedded boundary method for the wave equation
,”
SIAM J. Sci. Comput.
34
,
A2982
(
2012
).
32.
R.
Meakin
and
R.
Meakin
, “
On adaptive refinement and overset structured grids
,” AIAA Paper No. 97-1858,
1997
.
33.
A. M.
Roma
,
C. S.
Peskin
, and
M. J.
Berger
, “
An adaptive version of the immersed boundary method
,”
J. Comput. Phys.
153
,
509
(
1999
).
34.
S. M.
Ruffin
,
M.
Zaki
, and
S.
Sekhar
, “
A normal ray refinement technique for Cartesian-grid based Navier–Stokes solvers
,”
Int. J. Comput. Fluid Dyn.
26
,
231
(
2012
).
35.
K.
Anupindi
,
Y.
Delorme
,
D. A.
Shetty
, and
S. H.
Frankel
, “
A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics
,”
J. Comput. Phys.
254
,
200
(
2013
).
36.
Y. T.
Delorme
,
M. D.
Rodefeld
, and
S. H.
Frankel
, “
Multiblock high order large eddy simulation of powered Fontan hemodynamics: Towards computational surgery
,”
Comput. Fluids
143
,
16
(
2017
).
37.
D.
de Zelicourt
,
L.
Ge
,
C.
Wang
,
F.
Sotiropoulos
,
A.
Gilmanov
, and
A.
Yoganathan
, “
Flow simulations in arbitrarily complex cardiovascular anatomies—An unstructured Cartesian grid approach
,”
Comput. Fluids
38
,
1749
(
2009
).
38.
C.
Zhu
,
J.-H.
Seo
, and
R.
Mittal
, “
A graph-partitioned sharp-interface immersed boundary solver for efficient solution of internal flows
,”
J. Comput. Phys.
386
,
37
(
2019
).
39.
W.
Jones
,
A.
Marquis
, and
K.
Vogiatzaki
, “
Large-eddy simulation of spray combustion in a gas turbine combustor
,”
Combust. Flame
161
,
222
(
2014
).
40.
Z.
Yu
,
J-l
Le
, and
Y.
HUANG
, “
LES of combustion flow field in a practical aeroengine combustor with two-stage counter-rotating swirler
,”
J. Propul. Technol.
39
,
1576
(
2018
).
41.
A. M.
Roma
,
A Multilevel Self Adaptive Version of the Immersed Boundary Method
(
New York University
,
1996
).
42.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large -eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
43.
W.
Fang
,
L.
Rui
,
D.
Li
,
L.
Denghuan
, and
J.
Jie
, “
A dual timescale model for micro-mixing and its application in LES-TPDF simulations of turbulent nonpremixed flames
,”
Chin. J. Aeronaut.
32
,
875
(
2019
).
44.
F.
Wang
,
Y.
Wang
,
G.
Wei
,
D.
Liu
,
J.
Jin
, and
W. P.
Jones
, “
Flame structure of methane and kerosene combustion with a compact concave flame-holder using the LES-PDF method
,”
J. Therm. Sci.
33
,
222
(
2023
).
45.
W.
Jones
and
S.
Navarro-Martinez
, “
Numerical study of n-heptane auto-ignition using LES-pdf methods
,”
Flow, Turbul. Combust.
83
,
407
(
2009
).
46.
D.
Fredrich
,
W. P.
Jones
, and
A. J.
Marquis
, “
Thermo-acoustic instabilities in the PRECCINSTA combustor investigated using a compressible LES-pdf approach
,”
Flow, Turbul. Combust.
106
,
1399
(
2021
).
47.
Z.
Wu
and
L.
Guo
, “
Accuracy improvement of immersed boundary-lattice Boltzmann and finite element method by iterative velocity correction
,”
Phys. Fluids
34
,
103102
(
2022
).
48.
A.
Lagae
and
P.
Dutré
, “
An efficient ray-quadrilateral intersection test
,”
J. Graph. Tools
10
,
23
(
2005
).
49.
X.
Niu
,
C.
Shu
,
Y.
Chew
, and
Y.
Peng
, “
A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows
,”
Phys. Lett. A
354
,
173
(
2006
).
50.
J. M.
Stockie
and
B. T.
Wetton
, “
Stability analysis for the immersed fiber problem
,”
SIAM J. Appl. Math.
55
,
1577
(
1995
).
51.
J. M.
Stockie
and
B. R.
Wetton
, “
Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes
,”
J. Comput. Phys.
154
,
41
(
1999
).
52.
F.
Gao
and
E. E.
O'Brien
, “
A large-eddy simulation scheme for turbulent reacting flows
,”
Phys. Fluids A
5
,
1282
(
1993
).
53.
C.
Dopazo
and
E. E.
O'Brien
, “
Functional formulation of nonisothermal turbulent reactive flows
,”
Phys. Fluids
17
,
1968
(
1974
).
54.
W.
Jones
,
A.
Marquis
, and
V.
Prasad
, “
LES of a turbulent premixed swirl burner using the Eulerian stochastic field method
,”
Combust. Flame
159
,
3079
(
2012
).
55.
W.
Jones
and
S.
Navarro-Martinez
, “
Large eddy simulation of autoignition with a subgrid probability density function method
,”
Combust. Flame
150
,
170
(
2007
).
56.
W.
Jones
and
V.
Prasad
, “
Large eddy simulation of the Sandia Flame series (D–F) using the Eulerian stochastic field method
,”
Combust. Flame
157
,
1621
(
2010
).
57.
R.
Mustata
,
L.
Valiño
,
C.
Jiménez
,
W.
Jones
, and
S.
Bondi
, “
A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D)
,”
Combust. Flame
145
,
88
(
2006
).
58.
S.
Sarkar
and
S.
Sarkar
, “
Simulation of vortex dynamics in a cylinder wake by the Immersed Boundary technique
,”
Prog. Comput. Fluid Dyn.
10
,
129
(
2010
).
59.
P.
Parnaudeau
,
J.
Carlier
,
D.
Heitz
, and
E.
Lamballais
, “
Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900
,”
Phys. Fluids
20
,
085101
(
2008
).
60.
X.
Ma
,
G.-S.
Karamanos
, and
G.
Karniadakis
, “
Dynamics and low-dimensionality of a turbulent near wake
,”
J. Fluid Mech.
410
,
29
(
2000
).
61.
L.
Lourenco
, A particle image velocimetry study (
1993
).
62.
L.
Ong
and
J.
Wallace
, “
The velocity field of the turbulent very near wake of a circular cylinder
,”
Exp. Fluids
20
,
441
(
1996
).
63.
A. G.
Kravchenko
and
P.
Moin
, “
Numerical studies of flow over a circular cylinder at ReD = 3900
,”
Phys. Fluids
12
,
403
(
2000
).
64.
P. B.
Beaudan
,
Numerical Experiments on the Flow past a Circular Cylinder at Sub-Critical Reynolds Number
(
Stanford University
,
1995
).
65.
J.
Franke
and
W.
Frank
, “
Large eddy simulation of the flow past a circular cylinder at ReD = 3900
,”
J. Wind Eng. Ind. Aerodyn.
90
,
1191
(
2002
).
66.
K.
Kundu
and
J.
Deur
, “
A simplified reaction mechanism for calculation of emissions in hydrocarbon (Jet-A) combustion
,” AIAA Paper No. 93-2341,
1993
.
67.
J.
Wang
,
R.
Mao
,
W.
Tao
,
Z.
Wang
,
C.
Zhang
, and
Y.
Lin
, “
Numerical simulation of combustor effusion cooling flow based on source term method
,” in
Proceedings of the ASME 2011 Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
2019
), paper no.
V05BT17A001
.
You do not currently have access to this content.