Fire incidents in energy storage stations are frequent, posing significant firefighting safety risks. To simulate the fire characteristics and inhibition performances by fine water mist for lithium-ion battery packs in an energy-storage cabin, the PyroSim software is used to build a 1:1 experimental geometry model of a containerized lithium-ion energy storage cabin. The simulation reveals five stages and their characteristic parameter variations during a fire incident: initial temperature rise, flame generation, flame spread, stable combustion, and flame extinguishment. By adjusting various parameters of the fine water mist, the design of the fine water mist firefighting system for containerized energy storage units is optimized. The simulation results indicate that the optimal inhibition effect for the energy storage cabin's fine water mist firefighting system is achieved when the spray intensity is ≥24 l/min, the fog cone angle is 76°, nozzle velocity is 10 m/s, and the optimal particle size of the fine water mist is 50 μm. The research findings not only provide a rational method and theoretical guidance for the numerical simulation of thermal runaway in lithium batteries but also offer theoretical data support for the safety design and protection of future energy storage cabins.

1.
W.
Yu
,
P.
Li
,
X.
Zhang
,
D.
Ma
et al, “
Does the electrolyte flow in a lithium-ion battery? A perspective from the electrochemical-thermal-hydraulic-mechanical coupling in porous media
,”
Phys. Fluids
35
,
113103
(
2023
).
2.
S.
Li
,
Y.
Li
,
J.
Tian
et al, “
Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications
,”
Energy Storage Sci. Technol.
9
(
5
),
1505
(
2020
).
3.
Z.
Lou
,
K.
Wang
,
M.
Kang
et al, “
Plugging methods for underground gas extraction boreholes in coal seams: A review of processes, challenges and strategies
,”
Gas Sci. Eng.
122
,
205225
(
2024
).
4.
Y.
Kim
,
S.
Kim
,
B. S.
Kim
et al, “
Yielding behavior of concentrated lithium-ion battery anode slurry
,”
Phys. Fluids
34
,
123112
(
2022
).
5.
S. P.
Domino
, “
On the subject of large-scale pool fires and turbulent boundary layer interactions
,”
Phys. Fluids
36
,
025163
(
2024
).
6.
M.
Winter
,
B.
Barnett
, and
K.
Xu
, “
Before Li ion batteries
,”
Chem. Rev.
118
(
23
),
11433
11456
(
2018
).
7.
D.
Lisbona
and
T.
Snee
, “
A review of hazards associated with primary lithium and lithium-ion batteries
,”
Process Saf. Environ. Prot.
89
(
6
),
434
442
(
2011
).
8.
P. S.
Klein
and
D. A.
Melton
, “
A molecular mechanism for the effect of lithium on development
,”
Proc. Natl. Acad. Sci. U. S. A.
93
(
16
),
8455
8459
(
1996
).
9.
S.
Koohi-Fayegh
and
M. A.
Rosen
, “
A review of energy storage types, applications and recent developments
,”
J. Energy Storage
27
,
101047
(
2020
).
10.
C.
Zhang
,
Y. L.
Wei
,
P. F.
Cao
et al, “
Energy storage system: Current studies on batteries and power condition system
,”
Renewable Sustainable Energy Rev.
82
,
3091
3106
(
2018
).
11.
J.
Xu
,
X.
Cai
,
S.
Cai
et al, “
High‐energy lithium-ion batteries: Recent progress and a promising future in applications
,”
Energy Environ. Mater.
6
(
5
),
e12450
(
2023
).
12.
S.
Kim
,
G.
Park
,
S. J.
Lee
et al, “
Lithium‐metal batteries: From fundamental research to industrialization
,”
Adv. Mater.
35
(
43
),
2206625
(
2023
).
13.
G.
Ji
,
J.
Wang
,
Z.
Liang
et al, “
Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt
,”
Nat. Commun.
14
(
1
),
584
(
2023
).
14.
P.
Bugryniec
,
J.
Davidson
, and
S.
Brown
, “
Assessment of thermal runaway in commercial lithium iron phosphate cells due to overheating in an oven test
,”
Energy Procedia
151
,
74
78
(
2018
).
15.
F.
Larsson
,
P.
Andersson
,
P.
Blomqvist
et al, “
Author Correction: Toxic fluoride gas emissions from lithium-ion battery fires
,”
Sci. Rep.
8
,
5265
(
2018
).
16.
J.
Lamb
,
C. J.
Orendorff
,
L. A. M.
Steele
et al, “
Failure propagation in multi-cell lithium-ion batteries
,”
J. Power Sources
283
,
517
523
(
2015
).
17.
Z.
Han
,
R.
Zi
,
Y.
Yu
et al, “
Study on the minimum extinguishing concentration of C6F12O for extinguishing synthesis gas flame of lithium-ion battery
,”
J. Therm. Anal. Calorim.
148
,
3631
3643
(
2023
).
18.
Q.
Sun
,
H.
Liu
,
M.
Zhi
et al, “
Thermal characteristics of thermal runaway for pouch lithium-ion battery with different state of charges under various ambient pressures
,”
J. Power Sources
527
,
231175
(
2022
).
19.
Q.
Ren
,
Y.
Li
,
X.
Song
et al, “
High voltage electrolytes for lithium batteries
,”
Prog. Chem.
35
,
221132
(
2022
).
20.
L.
Zhao
,
J.
Yang
,
Z.
Zhao
et al, “
Overcharging thermal runaway characteristics and fine water mist fire extinguishing effect of lithium iron phosphate battery module
,”
Electric Power Eng. Technol.
40
(
1
),
2096
3203
(
2021
).
21.
L.
Guo
,
J.
Wu
, and
Z.
Huang
, “
Fire extinguishing effects of fine water mist at different pressures on lithium iron phosphate battery modules
,”
High Voltage Eng.
47
(
3
),
1002
1011
(
2021
).
22.
W.
Wang
,
F.
Zhao
, and
Y.
Li
, “
Research on influencing factors about temperature of short circuit area in lithium-ion power battery
,”
J. Electrochem. Energy Convers. Storage
18
(
2
),
020910
(
2021
).
23.
D.
Mishra
,
P.
Zhao
, and
A.
Jain
, “
Thermal runaway propagation in Li-ion battery packs due to combustion of vent gases
,”
J. Electrochem. Soc.
169
(
10
),
100520
(
2022
).
24.
J.
Chen
,
J.
Xian
,
F.
Lan
et al, “
Simulation and modeling of the ignition and combustion process of lithium-ion battery cells
,”
J. Chongqing Univ. Technol.
35
(
9
),
25
34
(
2021
).
25.
J.
Wang
,
Z.
Jia
,
P.
Qin
et al, “
Lithium iron phosphate lithium-ion battery module thermal runaway gas diffusion simulation
,”
Energy Storage Sci. Technol.
11
(
1
),
185
192
(
2022
).
26.
Y.
Song
et al, “
The significance of mitigating crosstalk in lithium-ion batteries: A review
,”
Energy Environ. Sci.
16
(
5
),
1943
1963
(
2023
).
27.
R.
Harish
and
K.
Venkatasubbaiah
, “
Numerical study of water spray interaction with fire plume in dual chambers connected to tall shaft
,”
Fire Saf. J.
74
,
1
10
(
2015
).
28.
Q.
Li
,
Z.
Tang
,
Z.
Fang
et al, “
Experimental study of the effectiveness of a water mist segment system in blocking fire-induced smoke and heat in mid-scale tunnel tests
,”
Tunnelling Underground Space Technol.
88
,
237
249
(
2019
).
29.
R.
Mehaddi
,
A.
Collin
,
P.
Boulet
et al, “
Use of a water mist for smoke confinement and radiation shielding in case of fire during tunnel construction
,”
Int. J. Therm. Sci.
148
,
106156
(
2022
).
30.
Y.
Ferng
and
C.
Liu
, “
Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code
,”
Nuclear Engineering and Design
241
,
3142
3148
(
2011
).
31.
K.
McGrattan
,
G.
Forney
,
J.
Floyd
et al,
Fire Dynamics Simulator (Version 4):User's Guide
(
US Department of Commerce, Technology Administration, National Institute of Standards and Technology
,
Gaithersburg
,
MD
,
2005
).
32.
B.
Mao
,
C.
Liu
,
K.
Yang
et al, “
Thermal runaway and fire behaviors of a 300 Ah lithium-ion battery with LiFePO4 as cathode
,”
Renewable Sustainable Energy Rev.
139
,
110717
(
2021
).
33.
Golubkov
,
D.
Fuchs
,
J.
Wagner
et al, “
Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes
,”
RSC Adv.
4
(
7
),
3633
3642
(
2014
).
You do not currently have access to this content.