Computational resources have grown exponentially in the past few decades. These machines make possible research and design in fields as diverse as medicine, astronomy, and engineering. Despite ever-increasing computational capabilities, direct simulation of complex systems has remained challenging owing to the degrees of freedom involved. At the cusp of exascale computing, high-resolution simulation of practical problems with minimal model assumptions may soon experience a renaissance. However, growing reliance on modern computers comes at the cost of a growing carbon footprint. To illustrate this, we examine historic computations in fluid dynamics where larger computers have afforded the opportunity to simulate flows at increasingly relevant Reynolds numbers. Under a variety of flow configurations, the carbon footprint of such simulations is found to scale roughly with the fourth power of Reynolds number. This is primarily explained by the computation cost in core-hours, which is also described by similar scaling, though regional differences in renewable energy use also play a role. Using the established correlation, we examine a large database of simulations to develop estimates for the carbon footprint of computational fluid dynamics in a given year. Collectively, the analysis provides an additional benchmark for new computations where, in addition to balancing considerations of model fidelity, carbon footprint should also be considered.

1.
R. M.
Kerr
, “
Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence
,”
J. Fluid Mech.
153
,
31
58
(
1985
).
2.
R.
Gotoh
,
D.
Fukayama
, and
T.
Nakano
, “
Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation
,”
Phys. Fluids
14
,
1065
1081
(
2002
).
3.
K. H.
Bech
,
N.
Tillmark
,
P.
Henrikalfredsson
, and
H. I.
Andersson
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
325
(
1995
).
4.
J. G. M.
Eggels
,
F.
Unger
,
M. H.
Weiss
,
J.
Westerweel
,
R. J.
Adrian
,
R.
Friedrich
, and
F. T. M.
Nieuwstadt
, “
Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment
,”
J. Fluid Mech.
268
,
175
209
(
1994
).
5.
F.
Unger
and
R.
Friedrich
, “
Large eddy simulation of fully-developed turbulent pipe flow
,” in
Flow Simulation of High Performance Computers I,
Notes on Numerical Fluid Mechanics Vol.
38
, edited by E. H. Hirschel (
Vieweg
,
1993
), pp.
201
216
.
6.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
7.
S.
Hoyas
and
J.
Jimenez
, “
Scaling of the velocity fluctuations in turbulent channels up to R e τ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
8.
J. A.
Silero
,
J.
Jimenez
, and
R. D.
Moser
, “
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ + 2000
,”
Phys. Fluids
25
,
105102
(
2013
).
9.
N. M. M.
Lee
and
R. D.
Moser
, “
Petascale direct numerical simulation of turbulent channel flow on up to 786k cores
,” in
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2013
), pp.
1
11
.
10.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to R e τ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
11.
G.
Alfonsi
,
S. A.
Ciliberti
,
M.
Mancini
, and
L.
Primavera
, “
Direct numerical simulation of turbulent channel flow on high-performance GPU computing system
,”
Computation
4
(
1
),
13
(
2016
).
12.
H.
Zhang
,
F. X.
Trias
,
A.
Gorobets
,
Y.
Tan
, and
A.
Oliva
, “
Direct numerical simulation of a fully developed turbulent square duct flow up to R e τ = 1200
,”
Int. J. Heat Fluid Flow
54
,
258
267
(
2015
).
13.
S.
Gavrilakis
, “
Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct
,”
J. Fluid Mech.
244
,
101
129
(
1992
).
14.
P. K.
Yeung
and
K.
Ravikumar
, “
Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes
,”
Phys. Rev. Fluids
5
,
110517
(
2020
).
15.
K.
Ravikumar
,
D.
Appelhans
, and
P. K.
Yeung
, “
GPU acceleration of extreme scale pseudo-spectral simulations of turbulence using asynchronism
,” in
SC'19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2019
), pp.
1
22
.
16.
A.
Vela-Martin
,
M. P.
Encinar
,
A.
Garcia-Gutierrez
, and
J.
Jimenez
, “
A low-storage method consistent with second-order statistics for time-resolved databases of turbulent channel flow up to R e τ = 5300
,”
J. Comput. Sci.
56
,
101476
(
2021
).
17.
K. A.
Goc
,
O.
Lehmkuhl
,
G. I.
Park
,
S. T.
Bose
, and
P.
Moin
, “
Large eddy simulation of aircraft at affordable cost: A milestone in computational fluid dynamics
,”
Flow
1
,
E14
(
2021
).
18.
M. H.
Akbari
and
S. J.
Price
, “
Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method
,”
J. Fluids Struct.
17
,
855
874
(
2003
).
19.
G.
Bell
, “
The future of high performance computers in science and engineering
,”
Commun. ACM
32
,
1091
1101
(
1989
).
20.
C. Q.
Choi
, “
The beating heart of the world's first exascale supercomputer
,” https://spectrum.ieee.org/frontier-exascale-supercomputer (
2022
).
21.
N. A.
Trayanova
, “
Whole heart modeling: Applications to cardiac electrophysiology and electromechanics
,”
Circ. Res.
108
(
1
),
113
(
2011
).
22.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
,
345
366
(
2011
).
23.
R.
Davé
,
D.
Anglés-Alcàzar
,
D.
Narayanan
,
Q.
Li
,
M. H.
Rafieferantsoa
, and
S.
Appleby
, “
SIMBA: Cosmological simulations with black hole growth and feedback
,”
MNRAS
486
,
2827
2849
(
2019
).
24.
M.
Watanabe
,
T.
Suzuki
,
R.
O'ishi
,
Y.
Komuro
,
S.
Watanabe
,
S.
Emori
,
T.
Takemura
,
M.
Chikira
,
T.
Ogura
,
M.
Sekiguchi
,
K.
Takata
,
D.
Yamazaki
,
T.
Yokohata
,
T.
Nozawa
,
H.
Hasumi
,
H.
Tatebe
, and
M.
Kimoto
, “
Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity
,”
J. Clim.
23
,
6312
6335
(
2010
).
25.
P. N.
Krishnani
, “
CFD study of drag reduction of a generic sport utility vehicle
,”
Master's thesis
(
California State University
,
Sacramento
,
2009
).
26.
D.
Cerinski
,
M.
Vujanovic
,
Z.
Petranovic
,
J.
Baleta
,
N.
Samec
, and
M.
Hribersek
, “
Numerical Analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber
,”
Energy Convers. Manage.
220
,
112862
(
2020
).
27.
P.
Ostermeier
,
F.
Fischer
,
S.
Fendt
,
S.
DeYoung
, and
H.
Spliethoff
, “
Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor
,”
Fuel
255
,
115790
(
2019
).
28.
T.
Ahmad
and
D.
Zhang
, “
A critical review of comparative global historical energy consumption and future demand: The story told so far
,”
Energy Rep.
6
,
1973
1991
(
2020
).
29.
Green Algorithms: How green are your computations?,”
http://calculator.green-algorithms.org/.
30.
L.
Lannelongue
,
J.
Grealey
, and
M.
Inouye
, “
Green algorithms: Quantifying the carbon footprint of computation
,”
Adv. Sci.
8
,
2100707
(
2021
).
31.
J.
Seinfeld
, “Jerry Seinfeld Performs Standup,” The Tonight Show Starring Jimmy Fallon (
2014
).
32.
G.
Kendall
, “
Would your mobile phone be powerful enough to get you to the moon?
” Published July 1, 2019. Accessed 5 May
2023
.
33.
The Apollo guidance computer: Hardware
,” in Computers in Spaceflight: The NASA Experience. https://history.nasa.gov/computers/Ch2-5.html/
34.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
35.
L. F.
Richardson
,
Weather Prediction by Numerical Process
(
Cambridge University Press
,
1922
).
36.
B.
Goldstein
,
D.
Gournaridis
, and
J. P.
Newell
, “
The carbon footprint of household energy use in the United States
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
32
),
19122
19130
(
2020
).
37.
D. A.
Donzis
,
P. K.
Yeung
, and
K. R.
Sreenivasan
, “
Dissipation and entropy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations
,”
Phys. Fluids
20
,
045108
(
2008
).
38.
V.
Eswaran
and
S. B.
Pope
, “
An examination of forcing in direct numerical simulations of turbulence
,”
Comput. Fluids
16
(
3
),
257
278
(
1988
).
39.
E.
Strohmaier
,
J.
Dongarra
,
H.
Simon
, and
M.
Meuer
, “
TOP 500: The list
,” https://www.top500.org/lists/top500/2023/11/,
2023
.
40.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to R e τ = 590
,”
Phys. Fluids
11
(
4
),
943
(
1999
).
41.
Johns Hopkins Turbulence Database
, http://turbulence.pha.jhu.edu.
42.
M.
Oberlack
,
S.
Hoyas
,
F.
Alcántara-vila
,
S.
Kraheberger
, and
J.
Laux
,
TUdatalib Repository
(
2021
).
43.
U.S. Department of Transportation Federal Highway Administration
,
Average annual miles per driver by age group
, https://www.fhwa.dot.gov/ohim/onh00/bar8.htm,
2022
.
44.
D.
Moran
,
K.
Kanemoto
,
M.
Jiborn
,
R.
Wood
,
J.
Tobben
, and
K. C.
Seto
, “
Carbon footprints of 13000 cities
,”
Environ. Res. Lett.
13
(
6
),
064041
(
2018
).
45.
P. K.
Yeung
and
S. B.
Pope
, “
Lagrangian statistics from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
207
,
531
586
(
1989
).
46.
E. A.
Leon
,
I.
Karlin
, and
R. E.
Grant
, “
Optimizing explicit hydrodynamics for power, energy, and performance
,” in
2015 IEEE International Conference on Cluster Computing
(
IEEE
,
2015
), pp.
11
21
.
47.
B. S.
Ryujin
,
A.
Vargas
,
I.
Karlin
,
S. A.
Dawson
,
K.
Weiss
,
A.
Bertsch
,
M. S.
Mckinley
,
M. R.
Collette
,
S. D.
Hammond
,
K.
Pedretti
, and
R. N.
Rieben
, “
Understanding power and energy utilization in large scale production physics simulation codes
,” arXiv:2201.01279v1 (
2022
).
48.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
,
011702
(
2012
).
49.
X. I. A.
Yang
and
K. P.
Griffin
, “
Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
,”
Phys. Fluids
33
,
015108
(
2021
).

Supplementary Material

You do not currently have access to this content.