The present investigation seeks to analyze the fluid dynamics associated with tidal turbines in the context of the EU (European Union) project NEMMO (The Next Evolution in Materials and Models for Ocean Energy, nemmo.eu). A pair of counter-rotating tidal turbines is employed for propelling a ship. The separation between these turbines is approximately one rotor diameter. Consequently, the power output of the downstream turbine is adversely affected by the heightened turbulence generated by the rotation of the upstream turbine. This power imbalance poses a substantial challenge in terms of power management. Therefore, this study concentrates on conducting a flow analysis of these counter-rotating turbines. Large Eddy Simulation (LES) of a dual tidal turbine rotating in opposite directions is conducted using the actuator line method. The flow is scrutinized by employing proper orthogonal decomposition (POD). The flow field is then reconstructed using the reduced order method. It is observed that a reduced number of modes is sufficient to reconstruct the flow between the tidal turbines. However, more modes are necessary to replicate the flow beyond the downstream turbine. The utilization of fewer modes proves effective in comprehending the flow at the inlet of the downstream turbine, ultimately resulting in reduced computational power requirements through faster matrix operations and lower memory usage for the POD decomposition.

1.
M.
Nuernberg
and
L.
Tao
, “
Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh
,”
Ocean Eng.
147
,
629
646
(
2018
).
2.
T.
O'Doherty
,
A.
Mason-Jones
,
D.
O'Doherty
,
C.
Byrne
,
I.
Owen
, and
Y.
Wang
, “
Experimental and computational analysis of a model horizontal axis tidal turbine
,” in
8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden
(
2009
).
3.
J.
Liu
,
H.
Lin
, and
S. R.
Purimitla
, “
Wake field studies of tidal current turbines with different numerical methods
,”
Ocean Eng.
117
,
383
397
(
2016
).
4.
P.
Ouro
,
M.
Harrold
,
T.
Stoesser
, and
P.
Bromley
, “
Hydrodynamic loadings on a horizontal axis tidal turbine prototype
,”
J. Fluids Struct.
71
,
78
95
(
2017
).
5.
X.
Lin
,
J.
Zhang
,
Y.
Zhang
,
J.
Zhang
, and
S.
Liu
, “
Comparison of actuator line method and full rotor geometry simulations of the wake field of a tidal stream turbine
,”
Water
11
,
560
(
2019
).
6.
J. N.
Sorensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
399
(
2002
).
7.
M.
Abkar
and
J. O.
Dabiri
, “
Self-similarity and flow characteristics of vertical-axis wind turbine wakes: An LES study
,”
J. Turbul.
18
,
373
389
(
2017
).
8.
P.
Ouro
,
L.
Ramírez
, and
M.
Harrold
, “
Analysis of array spacing on tidal stream turbine farm performance using large-eddy simulation
,”
J. Fluids Struct.
91
,
102732
(
2019
).
9.
P.
Bachant
,
A.
Goude
, and
M.
Wosnik
, “
Actuator line modeling of vertical-axis turbines
,” arXiv:1605.01449 (
2016
).
10.
V.
Mendoza
,
A.
Chaudhari
, and
A.
Goude
, “
Performance and wake comparison of horizontal and vertical axis wind turbines under varying surface roughness conditions
,”
Wind Energy
22
,
458
472
(
2019
).
11.
V.
Mendoza
and
A.
Goude
, “
Improving farm efficiency of interacting vertical-axis wind turbines through wake deflection using pitched struts
,”
Wind Energy
22
,
538
546
(
2019
).
12.
V.
Mendoza
,
P.
Bachant
,
C.
Ferreira
, and
A.
Goude
, “
Near-wake flow simulation of a vertical axis turbine using an actuator line model
,”
Wind Energy
22
,
171
188
(
2019
).
13.
C. S.
Pant
,
Y.
Delorme
, and
S.
Frankel
, “
Accuracy assessment of RANS predictions of active flow control for hydrofoil cavitation
,”
Processes
8
,
677
(
2020
).
14.
C. S.
Pant
and
S. H.
Frankel
, “
Interaction between surface blowing and re-entrant jet in active control of hydrofoil cavitation
,”
Ocean Eng.
242
,
110087
(
2021
).
15.
C. S.
Pant
and
A.
Bhattacharya
, “
Evaluation of an energy consistent entrainment model for volumetrically forced jets using large eddy simulations
,”
Phys. Fluids
30
,
105107
(
2018
).
16.
S.
Behera
,
R.
Bhardwaj
, and
A.
Agrawal
, “
Effect of co-flow on fluid dynamics of a cough jet with implications in spread of COVID-19
,”
Phys. Fluids
33
,
101701
(
2021
).
17.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Recovery in the wake of in-line axial-flow rotors
,”
Phys. Fluids
34
,
045104
(
2022
).
18.
Y.
Delorme
,
R.
Stanly
,
S. H.
Frankel
, and
D.
Greenblatt
, “
Application of actuator line model for large eddy simulation of rotor noise control
,”
Aerosp. Sci. Technol.
108
,
106405
(
2021
).
19.
R.
Stanly
,
L. A.
Martinez-Tossas
,
S. H.
Frankel
, and
Y.
Delorme
, “
Large-eddy simulation of a wind turbine using a filtered actuator line model
,”
J. Wind Eng. Ind. Aerodyn.
222
,
104868
(
2022
).
20.
M.
Manhart
, “
Vortex shedding from a hemisphere in a turbulent boundary layer
,”
Theor. Comput. Fluid Dyn.
12
,
1
28
(
1998
).
21.
J. H.
Citriniti
and
W. K.
George
, “
Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition
,”
J. Fluid Mech.
418
,
137
166
(
2000
).
22.
D.
Bastine
,
B.
Witha
,
M.
Wächter
, and
J.
Peinke
, “
POD analysis of a wind turbine wake in a turbulent atmospheric boundary layer
,”
J. Phys.: Conf. Ser.
524
,
012153
(
2014
).
23.
L.
Hellström
,
T.
Hohman
, and
A.
Smits
, “
POD analysis of the structure of vertical axis wind turbine wakes
,”
J. Wind Eng. Ind. Aerodyn.
237
,
105403
(
2023
).
24.
G.
De Cillis
,
S.
Cherubini
,
O.
Semeraro
,
S.
Leonardi
, and
P. D.
Palma
, “
POD analysis of the recovery process in wind turbine wakes
,”
J. Phys.: Conf. Ser.
1618
,
062016
(
2020
).
25.
G.
De Cillis
,
S.
Cherubini
,
O.
Semeraro
,
S.
Leonardi
, and
P.
De Palma
, “
POD-based analysis of a wind turbine wake under the influence of tower and nacelle
,”
Wind Energy
24
,
609
633
(
2021
).
26.
P.
Premaratne
,
W.
Tian
, and
H.
Hu
, “
A proper-orthogonal-decomposition (POD) study of the wake characteristics behind a wind turbine model
,”
Energies
15
,
3596
(
2022
).
27.
M. S.
Siddiqui
,
S. T. M.
Latif
,
M.
Saeed
,
M.
Rahman
,
A. W.
Badar
, and
S. M.
Hasan
, “
Reduced order model of offshore wind turbine wake by proper orthogonal decomposition
,”
Int. J. Heat Fluid Flow
82
,
108554
(
2020
).
28.
N.
Kolekar
,
A.
Vinod
, and
A.
Banerjee
, “
On blockage effects for a tidal turbine in free surface proximity
,”
Energies
12
,
3325
(
2019
).
29.
B.
Gaurier
,
P.
Druault
,
M.
Ikhennicheu
, and
G.
Germain
, “
Experimental analysis of the shear flow effect on tidal turbine blade root force from three-dimensional mean flow reconstruction
,”
Philos. Trans. R. Soc. A
378
,
20200001
(
2020
).
30.
T.
Wilson
,
T.
Grunloh
,
L.
Calian
,
J.
Khristy
,
A.
Patel
,
S.
Pemberton
,
P.
Simonovic
, and
J.
Yoo
, see https://github.com/IllinoisRocstar/AccelerateCFD_CE for “
AccelerateCFD—Parameterized model order reduction strategy for fast running CFD-quality transient transport
” (
2020
).
31.
M. J.
Churchfield
,
S.
Lee
,
J.
Michalakes
, and
P. J.
Moriarty
, “
A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
,”
J. Turbul.
13
,
N14
(
2012
).
32.
S.
Shamsoddin
and
F.
Porté-Agel
, “
Large eddy simulation of vertical axis wind turbine wakes
,”
Energies
7
,
890
912
(
2014
).
33.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
C.
Meneveau
, “
Large eddy simulation of wind turbine wakes: Detailed comparisons of two codes focusing on effects of numerics and subgrid modeling
,”
J. Phys.: Conf. Ser.
625
,
012024
(
2015
).
34.
N.
Troldborg
,
J. N.
Sørensen
, and
R.
Mikkelsen
, “
Actuator line simulation of wake of wind turbine operating in turbulent inflow
,”
J. Phys.: Conf. Ser.
75
,
012063
(
2007
).
35.
F.
Pierella
,
P.-Å.
Krogstad
, and
L.
Saetran
, “
Blind test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds
,”
Renewable Energy
70
,
62
77
(
2014
).
36.
H.
Sarlak
,
C.
Meneveau
, and
J. N.
Sørensen
, “
Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions
,”
Renewable Energy
77
,
386
399
(
2015
).
37.
P.
Saha
,
G.
Biswas
,
A.
Mandal
, and
S.
Sarkar
, “
Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators
,”
Int. J. Heat Mass Transfer
104
,
178
198
(
2017
).
38.
S.
Kasmaiee
,
M.
Tadjfar
,
S.
Kasmaiee
, and
G.
Ahmadi
, “
Linear stability analysis of surface waves of liquid jet injected in transverse gas flow with different angles
,”
Theor. Comput. Fluid Dyn.
38
,
107
138
(
2024
).
You do not currently have access to this content.