We present the modeling of the main facets of turbulence diffusion, i.e., diffusion of momentum, mass, density, and heat, within the smoothed particle hydrodynamics (SPH) method. The treatment is developed considering the large eddy simulation (LES) approach and is specifically founded on the δ-LES-SPH [A. Di Mascio et al., Phys. Fluids 29, 035102 (2017)], a model characterized by a turbulence closure for the continuity equation. The novelties introduced are the modeling of the advection–diffusion equation through turbulent mass diffusivity and the modeling of the internal energy equation through heat eddy diffusivity. Moreover, a calibration for the closure term of the continuity equation is also proposed, based on the physical assumption of equivalence between turbulent mass and density diffusion rates. Three test cases are investigated. The first test regards a two-dimensional (2D) problem with splashing and wave-breaking dynamics, which is used to investigate the proposed calibration for the turbulent density diffusion term. In the second test, a 2D jet in coflow condition without gravity is studied with particular emphasis on the advection–diffusion process. The last test regards the most general condition and reproduces three-dimensional (3D) jets in crossflow conditions, in which attention is given to both the mass and heat advection–diffusion processes. The proposed methodology, which allowed us to accurately reproduce the experimental tests considered, represents a promising approach for future investigation of problems characterized by complex dynamics with turbulence and mixing involved.

1.
A.
Di Mascio
,
M.
Antuono
,
A.
Colagrossi
, and
S.
Marrone
, “
Smoothed particle hydrodynamics method from a large eddy simulation perspective
,”
Phys. Fluids
29
,
035102
(
2017
).
2.
H. B.
Fischer
,
E. G.
List
,
R. C. Y.
Koh
,
J.
Imberger
, and
N. H.
Brooks
,
Mixing in Inland and Coastal Waters
(
Academic Press
,
New York
,
1979
), pp
1
483
.
3.
G. I.
Taylor
, “
I. Eddy motion in the atmosphere
,”
Philos. Trans. R. Soc. London, Ser. A
215
(
523–537
),
1
26
(
1915
).
4.
N.
Nakamura
, “
A new look at eddy diffusivity as a mixing diagnostic
,”
J. Atmos. Sci.
58
(
24
),
3685
3701
(
2001
).
5.
A. A.
Marrouf
,
K. S.
Essa
,
M. S.
El-Otaify
,
A. S.
Mohamed
, and
G.
Ismail
, “
The influence of eddy diffusivity variation on the atmospheric diffusion equation
,”
Open J. Air Pollut.
04
(
03
),
109
(
2015
).
6.
S. D.
Bachman
,
B.
Fox-Kemper
, and
F. O.
Bryan
, “
A diagnosis of anisotropic eddy diffusion from a high–resolution global ocean model
,”
J. Adv. Model. Earth Syst.
12
(
2
),
e2019MS001904
(
2020
).
7.
M.
Haigh
,
L.
Sun
,
J. C.
McWilliams
, and
P.
Berloff
, “
On eddy transport in the ocean. Part I: The diffusion tensor
,”
Ocean Modell.
164
,
101831
(
2021
).
8.
A. J.
Dyer
, “
Anisotropic diffusion coefficients and the global spread of volcanic dust
,”
J. Geophys. Res.
75
(
15
),
3007
3012
, https://doi.org/10.1029/JC075i015p03007 (
1970
).
9.
R. A.
Plumb
, “
Eddy fluxes of conserved quantities by small-amplitude waves
,”
J. Atmos. Sci.
36
,
1699
1704
(
1979
).
10.
S. M.
Griffies
, “
The Gent–McWilliams skew flux
,”
J. Phys. Oceanogr.
28
(
5
),
831
841
(
1998
).
11.
J. H.
LaCasce
and
K. G.
Speer
, “
Lagrangian statistics in unforced barotropic flows
,”
J. Mar. Res.
57
(
2
),
245
274
(
1999
).
12.
Y.
Zhu
and
P. J.
Fox
, “
Smoothed particle hydrodynamics model for diffusion through porous media
,”
Transp. Porous Media
43
,
441
471
(
2001
).
13.
L. F.
Richardson
, “
Atmospheric diffusion shown on a distance-neighbour graph
,”
Proc. R. Soc. London
110
(
756
),
709
737
(
1926
).
14.
G.
Fratini
,
P.
Ciccioli
,
A.
Febo
,
A.
Forgione
, and
R.
Valentini
, “
Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance
,”
Atmos. Chem. Phys.
7
(
11
),
2839
2854
(
2007
).
15.
Physics and Modelling of Wind Erosion
, edited by
Y.
Shao
(
Springer
,
Dordrecht, Netherlands
,
2008
).
16.
J.
Boussinesq
, “
Theorie de l'ecoulement tourbillant
,”
Mem. Acad. Sci
23
,
46
(
1877
).
17.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries
,
La Canada, CA
,
1998
), Vol.
2
, pp.
103
217
.
18.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
19.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
(
1
),
601
639
(
1991
).
20.
S. B.
Pope
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
(
1
),
35
(
2004
).
21.
D.
Carati
and
W.
Cabot
,
Anisotropic Eddy Viscosity Models
(
Studying Turbulence Using Numerical Simulation Databases
,
1996
).
22.
R.
Gardon
and
J. C.
Akfirat
, “
The role of turbulence in determining the heat-transfer characteristics of impinging jets
,”
Int. J. Heat Mass Transfer
8
(
10
),
1261
1272
(
1965
).
23.
J. C. R.
Hunt
, “
Turbulent diffusion from sources in complex flows
,”
Annu. Rev. Fluid Mech.
17
(
1
),
447
485
(
1985
).
24.
S.
Dupont
,
J. L.
Rajot
,
M.
Labiadh
,
G.
Bergametti
,
E.
Lamaud
,
M. R.
Irvine
et al, “
Dissimilarity between dust, heat, and momentum turbulent transports during aeolian soil erosion
,”
J. Geophys. Res.
124
(
2
),
1064
1089
, https://doi.org/10.1029/2018JD029048 (
2019
).
25.
D.
Li
and
E.
Bou-Zeid
, “
Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer
,”
Bound.-Layer Meteorol.
140
,
243
262
(
2011
).
26.
W.
Jia
,
X.
Zhang
,
H.
Zhang
, and
Y.
Ren
, “
Turbulent transport dissimilarities of particles, momentum, and heat
,”
Environ. Res.
211
,
113111
(
2022
).
27.
C.
Altomare
,
A. J.
Crespo
,
J. M.
Domínguez
,
M.
Gómez-Gesteira
,
T.
Suzuki
, and
T.
Verwaest
, “
Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures
,”
Coastal Eng.
96
,
1
12
(
2015
).
28.
M.
Luo
,
A.
Khayyer
, and
P.
Lin
, “
Particle methods in ocean and coastal engineering
,”
Appl. Ocean Res.
114
,
102734
(
2021
).
29.
F.
He
,
H.
Zhang
,
C.
Huang
, and
M.
Liu
, “
A stable SPH model with large CFL numbers for multi-phase flows with large density ratios
,”
J. Comput. Phys.
453
,
110944
(
2022
).
30.
S.
Shao
, “
Simulation of breaking wave by SPH method coupled with kε model
,”
J. Hydraul. Res.
44
(
3
),
338
349
(
2006
).
31.
S. C.
Yim
,
D.
Yuk
,
A.
Panizzo
,
M.
Di Risio
, and
P. F.
Liu
, “
Numerical simulations of wave generation by a vertical plunger using RANS and SPH models
,”
J. Waterw., Port, Coastal, Ocean Eng.
134
(
3
),
143
159
(
2008
).
32.
R.
Issa
,
D.
Violeau
,
E. S.
Lee
, and
H.
Flament
, “
Modelling nonlinear water waves with RANS and LES SPH models
,” in
Advances on Numerical Simulation Nonlinear Water Waves
(
World Scientific Publishing
,
2010
), pp.
497
537
.
33.
E.
Bertevas
,
T.
Tran-Duc
,
K.
Le-Cao
,
B. C.
Khoo
, and
N.
Phan-Thien
, “
A smoothed particle hydrodynamics (SPH) formulation of a two-phase mixture model and its application to turbulent sediment transport
,”
Phys. Fluids
31
(
10
),
103303
(
2019
).
34.
D.
Wang
and
P. L. F.
Liu
, “
An ISPH with kε closure for simulating turbulence under solitary waves
,”
Coastal Eng.
157
,
103657
(
2020
).
35.
D.
De Padova
,
M.
Mossa
, and
S.
Sibilla
, “
A multi-phase SPH simulation of oil spill diffusion in seawater currents
,”
Acta Mech. Sin.
39
(
2
),
722230
(
2023
).
36.
T.
Bao
,
J.
Hu
,
C.
Huang
, and
Y.
Yu
, “
Smoothed particle hydrodynamics with kε closure for simulating wall-bounded turbulent flows at medium and high Reynolds numbers
,”
Phys. Fluids
35
(
8
),
085114
(
2023
).
37.
E. Y.
Lo
and
S.
Shao
, “
Simulation of near-shore solitary wave mechanics by an incompressible SPH method
,”
Appl. Ocean Res.
24
(
5
),
275
286
(
2002
).
38.
H.
Gotoh
,
S.
Shao
, and
T.
Memita
, “
SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater
,”
Coast Eng. J.
46
,
39
63
(
2004
).
39.
R.
Dalrymple
and
B.
Rogers
, “
Numerical modeling of water waves with the SPH method
,”
Coastal Eng.
53
(
2–3
),
141
147
(
2006
).
40.
A.
Khayyer
,
H.
Gotoh
,
Y.
Shimizu
,
K.
Gotoh
,
H.
Falahaty
, and
S.
Shao
, “
Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity
,”
Coastal Eng.
140
,
1
22
(
2018
).
41.
X.
Lai
,
S.
Li
,
J.
Yan
,
L.
Liu
, and
A. M.
Zhang
, “
Multiphase large-eddy simulations of human cough jet development and expiratory droplet dispersion
,”
J. Fluid Mech.
942
,
A12
(
2022
).
42.
H. G.
Lyu
,
P. N.
Sun
,
A.
Colagrossi
, and
A. M.
Zhang
, “
Towards SPH simulations of cavitating flows with an EoSB cavitation model
,”
Acta Mech. Sin.
39
(
2
),
722158
(
2023
).
43.
D. D.
Meringolo
,
Y.
Liu
,
X. Y.
Wang
, and
A.
Colagrossi
, “
Energy balance during generation, propagation and absorption of gravity waves through the δ-LES-SPH model
,”
Coastal Eng.
140
,
355
370
(
2018
).
44.
D. D.
Meringolo
,
S.
Marrone
,
A.
Colagrossi
, and
Y.
Liu
, “
A dynamic δ-SPH model: How to get rid of diffusive parameter tuning
,”
Comput. Fluids
179
,
334
355
(
2019
).
45.
M.
Antuono
,
S.
Marrone
,
A.
Di Mascio
, and
A.
Colagrossi
, “
Smoothed particle hydrodynamics method from a large eddy simulation perspective. Generalization to a quasi-Lagrangian model
,”
Phys. Fluids
33
,
015102
(
2021
).
46.
A.
Colagrossi
,
S.
Marrone
,
P.
Colagrossi
, and
D.
Le Touzé
, “
Da Vinci's observation of turbulence: A French-Italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years later
,”
Phys. Fluids
33
(
11
),
115122
(
2021
).
47.
D. D.
Meringolo
,
A.
Lauria
,
F.
Aristodemo
, and
P. F.
Filianoti
, “
Large eddy simulation within the smoothed particle hydrodynamics: Applications to multiphase flows
,”
Phys. Fluids
35
(
6
),
063312
(
2023
).
48.
G.
Tripepi
,
F.
Aristodemo
,
D. D.
Meringolo
,
L.
Gurnari
, and
P.
Filianoti
, “
Hydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: Physical tests and δ-LES-SPH simulations
,”
Coastal Eng.
158
,
103690
(
2020
).
49.
G.
Zhang
,
J.
Chen
,
Y.
Qi
,
J.
Li
, and
Q.
Xu
, “
Numerical simulation of landslide generated impulse waves using a δ+-LES-SPH model
,”
Adv. Water Resour.
151
,
103890
(
2021
).
50.
F.
Aristodemo
and
P.
Filianoti
, “
On the stability of submerged rigid breakwaters against solitary waves
,”
Coastal Eng.
177
,
104196
(
2022
).
51.
J.
Michel
,
D.
Durante
,
A.
Colagrossi
, and
S.
Marrone
, “
Energy dissipation in violent three-dimensional sloshing flows induced by high-frequency vertical accelerations
,”
Phys. Fluids
34
(
10
),
102114
(
2022
).
52.
A. M.
Tartakovsky
and
P.
Meakin
, “
A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability
,”
J. Comput. Phys.
207
(
2
),
610
624
(
2005
).
53.
F.
Aristodemo
,
I.
Federico
,
P.
Veltri
, and
A.
Panizzo
, “
Two-phase SPH modelling of advective diffusion processes
,”
Environ. Fluid Mech.
10
,
451
470
(
2010
).
54.
B.
Firoozabadi
and
M.
Mahdinia
, “
2D numerical simulation of density currents using the SPH projection method
,”
Eur. J. Mech., B
38
,
38
46
(
2013
).
55.
M.
Abdolahzadeh
,
A.
Tayebi
, and
P.
Omidvar
, “
Thermal effects on two-phase flow in 2D mixers using SPH
,”
Int. Commun. Heat Mass Transfer
120
,
105055
(
2021
).
56.
P. W.
Cleary
, “
Modelling confined multi-material heat and mass flows using SPH
,”
Appl. Math. Modell.
22
(
12
),
981
993
(
1998
).
57.
P. W.
Cleary
and
J. J.
Monaghan
, “
Conduction modelling using smoothed particle hydrodynamics
,”
J. Comput. Phys.
148
(
1
),
227
264
(
1999
).
58.
P.
Yang
,
C.
Huang
,
Z.
Zhang
,
T.
Long
, and
M.
Liu
, “
Simulating natural convection with high rayleigh numbers using the smoothed particle hydrodynamics method
,”
Int. J. Heat Mass Transfer
166
,
120758
(
2021
).
59.
W.
Zhang
and
X.
Yang
, “
SPH modeling of natural convection in horizontal annuli
,”
Acta Mech. Sin.
39
(
4
),
322093
(
2023
).
60.
M.
Antuono
,
A.
Colagrossi
,
S.
Marrone
, and
D.
Molteni
, “
Free-surface flows solved by means of SPH schemes with numerical diffusive terms
,”
Comput. Phys. Commun.
181
,
532
549
(
2010
).
61.
A.
Einstein
, “
Investigations on the theory of the Brownian movement
,”
Ann. Phys.
322
,
549
560
(
1905
).
62.
A.
Faghri
,
Y.
Zhang
, and
J. R.
Howell
,
Advanced Heat and Mass Transfer
(
Global Digital Press
,
2010
).
63.
M.
Belevich
, “
On the continuity equation
,”
J. Phys. A
42
(
37
),
375502
(
2009
).
64.
Y.
Tominaga
and
T.
Stathopoulos
, “
Turbulent Schmidt numbers for CFD analysis with various types of flowfield
,”
Atmos. Environ.
41
(
37
),
8091
8099
(
2007
).
65.
C.
Gualtieri
,
A.
Angeloudis
,
F.
Bombardelli
,
S.
Jha
, and
T.
Stoesser
, “
On the values for the turbulent Schmidt number in environmental flows
,”
Fluids
2
(
2
),
17
(
2017
).
66.
D. D.
Meringolo
,
A.
Colagrossi
,
S.
Marrone
, and
F.
Aristodemo
, “
On the filtering of acoustic components in weakly-compressible SPH simulations
,”
J. Fluids Struct.
70
,
1
23
(
2017
).
67.
C. L.
Liu
,
H. R.
Zhu
, and
J. T.
Bai
, “
Effect of turbulent Prandtl number on the computation of film-cooling effectiveness
,”
Int. J. Heat Mass Transfer
51
(
25–26
),
6208
6218
(
2008
).
68.
A.
Colagrossi
,
M.
Antuono
,
A.
Souto-Iglesias
, and
D.
Le Touzé
, “
Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows
,”
Phys. Rev. E
84
(
2
),
026705
(
2011
).
69.
M.
Antuono
,
S.
Marrone
,
A.
Colagrossi
, and
B.
Bouscasse
, “
Energy balance in the δ-SPH scheme
,”
Comput. Methods Appl. Mech. Eng
289
,
209
226
(
2015
).
70.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
(
1
),
214
226
(
1997
).
71.
M.
Antuono
,
A.
Colagrossi
, and
S.
Marrone
, “
Numerical diffusive terms in weakly-compressible SPH schemes
,”
Comput. Phys. Commun.
183
(
12
),
2570
2580
(
2012
).
72.
A.
Colagrossi
and
M.
Landrini
, “
Numerical simulation of interfacial flows by smoothed particle hydrodynamics
,”
J. Comput. Phys
191
,
448
475
(
2003
).
73.
S.
Marrone
,
M.
Antuono
,
A.
Colagrossi
,
G.
Colicchio
,
D.
Le Touzé
, and
G.
Graziani
, “
Delta-SPH model for simulating violent impact flows
,”
Comput. Meth. Appl. Mech. Eng
200
,
1526
1542
(
2011
).
74.
I.
Federico
,
S.
Marrone
,
A.
Colagrossi
,
F.
Aristodemo
, and
M.
Antuono
, “
Simulating 2D open-channel flows through an SPH model
,”
Eur. J. Mech., B
34
,
35
46
(
2012
).
75.
H. J.
Wang
, “
Jet interaction in a still or co-flowing environment
,” Ph.D. thesis (
Hong Kong University of Science and Technology
,
1999
).
76.
E. J.
List
, “
Turbulent jets and plumes
,”
Annu. Rev. Fluid Mech.
14
(
1
),
189
212
(
1982
).
77.
T. N.
Aziz
,
J. P.
Raiford
, and
A. A.
Khan
, “
Numerical simulation of turbulent jets
,”
Eng. Appl. Comput. Fluid Mech.
2
(
2
),
234
243
(
2008
).
78.
D.
Chen
and
G. H.
Jirka
, “
LIF study of plane jet bounded in shallow water layer
,”
J. Hydraul. Eng.
125
(
8
),
817
826
(
1999
).
79.
P. N.
Papanicolaou
and
E. J.
List
, “
Investigations of round vertical turbulent buoyant jets
,”
J. Fluid Mech.
195
,
341
391
(
1988
).
80.
P. C.
Chu
,
J. H.
Lee
, and
V. H.
Chu
, “
Spreading of turbulent round jet in coflow
,”
J. Hydraul. Eng.
125
(
2
),
193
204
(
1999
).
81.
M. J.
Davidson
and
H. J.
Wang
, “
Strongly advected jet in a coflow
,”
J. Hydraul. Eng.
128
(
8
),
742
752
(
2002
).
82.
R. P.
Patel
, “
Turbulent jets and wall jets in uniform streaming flow
,”
Aeronaut. Q.
22
(
4
),
311
326
(
1971
).
83.
C.
Labridis
, “
Buoyant jets in shallow water with a crossflow
,” Doctoral dissertation (
University of British Columbia
,
1989
).
84.
G. H.
Keulegan
,
Laws of Turbulent Flow in Open Channels
(
National Bureau of Standards
,
Gaithersburg, MD
,
1938
), Vol.
21
, pp.
707
741
.
You do not currently have access to this content.