A thermodynamic instability in a homogeneous fluid can lead to spontaneous formation of distinct domains within the fluid. This process involves not only the spatial redistribution of fluid density but also transient exchanges of pressure, temperature, and energy. However, classical theoretical frameworks, such as the Ginzburg–Landau and Cahn–Hilliard models, lack incorporation of these essential thermodynamic aspects. To investigate the dynamics of multiple physical fields during phase separation, we numerically solve a two-dimensional van der Waals fluid model. Thermodynamic consistency is demonstrated by verifying the coexistence curve. While the equilibrium pressure remains similar across the unstable region of the isotherm, we demonstrate that the energy in the system depends on the initial density. Although the majority of energy is stored as heat at typical values of the heat capacity, high-density domains contain less specific energy compared to their low-density counterparts due to interparticle attraction. Consequently, the transition of low-density domains into high-density through the process of coalescence releases excess energy, which redistributes in the form of longitudinal waves and heat. We also highlight the role of parameters, such as heat capacity and thermal conductivity, in less intuitive phenomena, including elevated temperature fluctuations and memory preservation.

1.
A. J.
Bray
, “
Theory of phase-ordering kinetics
,”
Adv. Phys.
51
,
481
(
2002
).
2.
K.
Binder
, “
Theory of first-order phase transitions
,”
Rep. Prog. Phys.
50
,
783
(
1987
).
3.
J. D.
Van der Waals
,
Over de Continuiteit Van Den Gas-en Vloeistoftoestand
(
Sijthoff
,
1873
), Vol.
1
.
4.
J. S.
Rowlinson
, “
Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”
,”
J. Stat. Phys.
20
,
197
(
1979
).
5.
S.
Lee
,
J.
Lee
,
Y.
Kim
,
S.
Jeong
,
D. E.
Kim
, and
G.
Yun
, “
Quasi-equilibrium phase coexistence in single component supercritical fluids
,”
Nat. Commun.
12
,
4630
(
2021
).
6.
L. A.
Bagatolli
and
E.
Gratton
, “
Direct observation of lipid domains in free-standing bilayers using two-photon excitation fluorescence microscopy
,”
J. Fluorescence
11
,
141
(
2001
).
7.
J. S.
Langer
, “
Theory of spinodal decomposition in alloys
,”
Ann. Phys.
65
,
53
(
1971
).
8.
G. I.
Tóth
and
B.
Kvamme
, “
Phase field modelling of spinodal decomposition in the oil/water/asphaltene system
,”
Phys. Chem. Chem. Phys.
17
,
20259
(
2015
).
9.
S.
Panyukov
and
Y.
Rabin
, “
Statistical physics of polymer gels
,”
Phys. Rep.
269
,
1–131
(
1996
).
10.
C. P.
Brangwynne
,
P.
Tompa
, and
R. V.
Pappu
, “
Polymer physics of intracellular phase transitions
,”
Nat. Phys.
11
,
899
(
2015
).
11.
J. S.
Higgins
and
J. T.
Cabral
, “
A thorny problem? Spinodal decomposition in polymer blends
,”
Macromolecules
53
,
4137
(
2020
).
12.
K.
Kawasaki
and
T.
Ohta
, “
Kinetics of fluctuations for systems undergoing phase transitions-interfacial approach
,”
Physica A
118
,
175
(
1983
).
13.
F.
Boyer
, “
A theoretical and numerical model for the study of incompressible mixture flows
,”
Comput. Fluids
31
,
41
(
2002
).
14.
S.
Hosseini
and
I.
Karlin
, “
Lattice Boltzmann for non-ideal fluids: Fundamentals and practice
,”
Phys. Rep.
1030
,
1–137
(
2023
).
15.
C.
Rohde
, “
On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions
,”
Z. Angew. Math. Mech.
85
,
839
(
2005
).
16.
T.
Dlotko
, “
Navier–Stokes–Cahn–Hilliard system of equations
,”
J. Math. Phys.
63
,
111511
(
2022
).
17.
V.
Giovangigli
, “
Kinetic derivation of diffuse-interface fluid models
,”
Phys. Rev. E
102
,
012110
(
2020
).
18.
D. J.
Korteweg
, “
Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité
,”
Arch. Néerl. Sci. Exactes Nat.
6
,
1
24
(
1901
).
19.
D.
Jasnow
and
J.
Vinals
, “
Coarse-grained description of thermo-capillary flow
,”
Phys. Fluids
8
,
660
(
1996
).
20.
N.
Vladimirova
,
A.
Malagoli
, and
R.
Mauri
, “
Diffusiophoresis of two-dimensional liquid droplets in a phase-separating system
,”
Phys. Rev. E
60
,
2037
(
1999
).
21.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
(
1998
).
22.
B.
Sharma
and
R.
Kumar
, “
A brief introduction to bulk viscosity of fluids
,” arXiv:2303.08400 (
2023
).
23.
K. J.
Burns
,
G. M.
Vasil
,
J. S.
Oishi
,
D.
Lecoanet
, and
B. P.
Brown
, “
Dedalus: A flexible framework for numerical simulations with spectral methods
,”
Phys. Rev. Res.
2
,
023068
(
2020
).
24.
D.-Y.
Hsieh
and
X.-P.
Wang
, “
Phase transition in van der Waals fluid
,”
SIAM J. Appl. Math.
57
,
871
(
1997
).
25.
X.
Ren
and
L.
Truskinovsky
, “
Finite scale microstructures in nonlocal elasticity
,”
J. Elast.
59
,
319
(
2000
).
26.
D. C.
Johnston
,
Advances in Thermodynamics of the Van Der Waals Fluid
(
Morgan & Claypool Publishers
,
2014
).
27.
C.
Kittel
,
H.
Kroemer
, and
H. L.
Scott
, “
Thermal Physics, 2nd ed.
,”
Am. J. Phys.
66
,
164
(
1998
).
28.
S.
Mao
,
D.
Kuldinow
,
M. P.
Haataja
, and
A.
Košmrlj
, “
Phase behavior and morphology of multicomponent liquid mixtures
,”
Soft Matter
15
,
1297
(
2019
).
29.
J.
Krägel
,
G.
Kretzschmar
,
J.
Li
,
G.
Loglio
,
R.
Miller
, and
H.
Möhwald
, “
Surface rheology of monolayers
,”
Thin Solid Films
284–285
,
361
(
1996
).

Supplementary Material

You do not currently have access to this content.